使用Quartus-II 9.1SP2 + ModelSim 6.5b-Aletra + Altera DE2-115 FPGA開發平台,設計4 bit Adder 全加器 Testbench為例
/*
Compiler??? : Quartus II 9.1sp2 + ModelSim-Altera
Testbench
ripple_carry_adder_subtractor(S, C, V, A, B, Op);
*/
`timescale 10ns/10ps
module add_4_v_tb;
reg [3:0] a;
reg [3:0] b;
reg Op;
wire [3:0] s;
wire co;
wire over;
ripple_carry_adder_subtractor DUT(
.A(a),
.B(b),
.Op(Op),
.S(s),
.C(co),
.V(over)
);
initial begin
a=4'h0;b=4'h0;Op=1'b0;
#1500 Op=1'b1;
#3000 $stop;
end
always begin
#50 a=a+1;
end
always begin
#100 b = a + 1;
end
endmodule
module ripple_carry_adder_subtractor(S, C, V, A, B, Op);
output [3:0] S; // The 4-bit sum/difference.
output C; // The 1-bit carry/borrow status.
output V; // The 1-bit overflow status.
input [3:0] A; // The 4-bit augend/minuend.
input [3:0] B; // The 4-bit addend/subtrahend.
input Op; // The operation: 0 => Add, 1=>Subtract.
wire C0; // The carry out bit of fa0, the carry in bit of fa1.
wire C1; // The carry out bit of fa1, the carry in bit of fa2.
wire C2; // The carry out bit of fa2, the carry in bit of fa3.
wire C3; // The carry out bit of fa2, used to generate final carry/borrrow.
wire B0; // The xor'd result of B[0] and Op
wire B1; // The xor'd result of B[1] and Op
wire B2; // The xor'd result of B[2] and Op
wire B3; // The xor'd result of B[3] and Op
// Looking at the truth table for xor we see that
// B xor 0 = B, and
// B xor 1 = not(B).
// So, if Op==1 means we are subtracting, then
// adding A and B xor Op alog with setting the first
// carry bit to Op, will give us a result of
// A+B when Op==0, and A+not(B)+1 when Op==1.
// Note that not(B)+1 is the 2's complement of B, so
// this gives us subtraction.
xor(B0, B[0], Op);
xor(B1, B[1], Op);
xor(B2, B[2], Op);
xor(B3, B[3], Op);
xor(C, C3, Op); // Carry = C3 for addition, Carry = not(C3) for subtraction.
xor(V, C3, C2); // If the two most significant carry output bits differ, then we have an overflow.
full_adder fa0(S[0], C0, A[0], B0, Op); // Least significant bit.
full_adder fa1(S[1], C1, A[1], B1, C0);
full_adder fa2(S[2], C2, A[2], B2, C1);
full_adder fa3(S[3], C3, A[3], B3, C2); // Most significant bit.
endmodule // ripple_carry_adder_subtractor
module full_adder(S, Cout, A, B, Cin);
output S;
output Cout;
input A;
input B;
input Cin;
wire w1;
wire w2;
wire w3;
wire w4;
xor(w1, A, B);
xor(S, Cin, w1);
and(w2, A, B);
and(w3, A, Cin);
and(w4, B, Cin);
or(Cout, w2, w3, w4);
endmodule // full_adder
Testbench
ripple_carry_adder_subtractor(S, C, V, A, B, Op);
*/
`timescale 10ns/10ps
module add_4_v_tb;
reg [3:0] a;
reg [3:0] b;
reg Op;
wire [3:0] s;
wire co;
wire over;
ripple_carry_adder_subtractor DUT(
.A(a),
.B(b),
.Op(Op),
.S(s),
.C(co),
.V(over)
);
initial begin
a=4'h0;b=4'h0;Op=1'b0;
#1500 Op=1'b1;
#3000 $stop;
end
always begin
#50 a=a+1;
end
always begin
#100 b = a + 1;
end
endmodule
module ripple_carry_adder_subtractor(S, C, V, A, B, Op);
output [3:0] S; // The 4-bit sum/difference.
output C; // The 1-bit carry/borrow status.
output V; // The 1-bit overflow status.
input [3:0] A; // The 4-bit augend/minuend.
input [3:0] B; // The 4-bit addend/subtrahend.
input Op; // The operation: 0 => Add, 1=>Subtract.
wire C0; // The carry out bit of fa0, the carry in bit of fa1.
wire C1; // The carry out bit of fa1, the carry in bit of fa2.
wire C2; // The carry out bit of fa2, the carry in bit of fa3.
wire C3; // The carry out bit of fa2, used to generate final carry/borrrow.
wire B0; // The xor'd result of B[0] and Op
wire B1; // The xor'd result of B[1] and Op
wire B2; // The xor'd result of B[2] and Op
wire B3; // The xor'd result of B[3] and Op
// Looking at the truth table for xor we see that
// B xor 0 = B, and
// B xor 1 = not(B).
// So, if Op==1 means we are subtracting, then
// adding A and B xor Op alog with setting the first
// carry bit to Op, will give us a result of
// A+B when Op==0, and A+not(B)+1 when Op==1.
// Note that not(B)+1 is the 2's complement of B, so
// this gives us subtraction.
xor(B0, B[0], Op);
xor(B1, B[1], Op);
xor(B2, B[2], Op);
xor(B3, B[3], Op);
xor(C, C3, Op); // Carry = C3 for addition, Carry = not(C3) for subtraction.
xor(V, C3, C2); // If the two most significant carry output bits differ, then we have an overflow.
full_adder fa0(S[0], C0, A[0], B0, Op); // Least significant bit.
full_adder fa1(S[1], C1, A[1], B1, C0);
full_adder fa2(S[2], C2, A[2], B2, C1);
full_adder fa3(S[3], C3, A[3], B3, C2); // Most significant bit.
endmodule // ripple_carry_adder_subtractor
module full_adder(S, Cout, A, B, Cin);
output S;
output Cout;
input A;
input B;
input Cin;
wire w1;
wire w2;
wire w3;
wire w4;
xor(w1, A, B);
xor(S, Cin, w1);
and(w2, A, B);
and(w3, A, Cin);
and(w4, B, Cin);
or(Cout, w2, w3, w4);
endmodule // full_adder
沒有留言:
張貼留言