2019年4月30日 星期二

C語言 例題5-11 剛性微分方程 y'(t)=-15y(t) , 0<=t , y(0)=1 真實解 y(t)= exp(-15t)

C語言   例題5-11 剛性微分方程   y'(t)=-15y(t)  , 0<=t  , y(0)=1
 真實解  y(t)= exp(-15t)


數學領域中,剛性方程(stiffness equation)是指一個微分方程,其數值分析的解只有在時間間隔很小時才會穩定,只要時間間隔略大,其解就會不穩定。目前很難去精確地去定義哪些微分方程是剛性方程,然而粗略而言,若此方程式中包含使其快速變動的項,則其為剛性方程。


/* ex5-11.c based on Four-Order Runge-Kutta
 * Method to approximate the solution of the
 * initial-value problem
 *   y'=f(y,t), a<=t<=b, y(a)=y0
 * at (n+1) equally spaced numbers in the interval
 * [a,b]: input a,b,n,and initial condition y0.
 */
 // y'(t)=-15y(t)  , 0<=t  , y(0)=1
 // 真實解  y(t)= exp(-15t)

 #include <stdio.h>
 #include <math.h>
 #define  F(y,t)   (-15*y)
 #define  W(t)     (exp(-15*t))

 void main()
 {
    int i,n=1000;
    double a=0.0,b=1.0,y0=1.0,k1,k2,k3,k4,h,t,y,err;
    h=(b-a)/n;
    t=a;
    y=y0;
    err=fabs(y-W(t));
    printf("t      y(t)       w(t)      error\n");
    printf("=====================================\n");
    printf("%.2lf %10.7lf %10.7lf %10.7lf\n"
   ,t,y,W(t),err);
    for(i=1;i<=n;i++)
    {
       k1=h*F(y,t);
       k2=h*F((y+k1/2.0),(t+h/2.0));
       k3=h*F((y+k2/2.0),(t+h/2.0));
       k4=h*F((y+k3),(t+h));
       y=y+(k1+2*k2+2*k3+k4)/6.0;
     
       t=a+i*h;
       err=fabs(y-W(t));
       if(i%100==0)
          printf("%.2lf %10.7lf %10.7lf %10.7lf\n"
         ,t,y,W(t),err);
    }
    return;
}

輸出畫面
t      y(t)       w(t)      error
=====================================
0.00  1.0000000  1.0000000  0.0000000
0.10  0.2231302  0.2231302  0.0000000
0.20  0.0497871  0.0497871  0.0000000
0.30  0.0111090  0.0111090  0.0000000
0.40  0.0024788  0.0024788  0.0000000
0.50  0.0005531  0.0005531  0.0000000
0.60  0.0001234  0.0001234  0.0000000
0.70  0.0000275  0.0000275  0.0000000
0.80  0.0000061  0.0000061  0.0000000
0.90  0.0000014  0.0000014  0.0000000
1.00  0.0000003  0.0000003  0.0000000

Command exited with non-zero status 233

https://www.bluffton.edu/homepages/facstaff/nesterd/java/slopefields.html




C語言 例題 5-7 利用 二階 Runge-Kutta 解 二階常微分程式 y'' + 4y' + 4y = 4 cos(t) + 3 sin(t) , y(0)=1 , y'(0)=0

C語言 例題 5-7 利用 二階 Runge-Kutta 解 二階常微分程式
y'' + 4y' + 4y = 4 cos(t) + 3 sin(t)   ,  y(0)=1  , y'(0)=0

設 z= y'

z' + 4z + 4y = 4 cos(t) + 3 sin(t)

z ' = f2( y , z , t) = - 4z - 4y + 4 cos(t) + 3 sin(t) 
f'  = f1(y,z ,t) = z  ,  y(0)=1

設 y1= y , y2=z

y'1 = y' = f1(y1,y2,t) = y2  ,  y1(0)=1   << f'  = f1(y,z ,t) = z  ,  y(0)=1 >>

y'2 = z' = f2(y1,y2,t) = - 4y2 - 4y1 + 4 cos(t) + 3 sin(t)  , y2(0)=0   <<- 4z - 4y + 4 cos(t) + 3 sin(t) >>


/* ex5-7.c based on Second-Order Runge-Kutta Method
 * to approximate the solution of the m order
 * system of first-order initial-value problem.
 *    y1=f1(y1,y2,...,ym,t)
 *    y2=f2(y1,y2,...,ym,t)
 *        .
 *        .
 *    ym=fm(y1,y2,...,ym,t)
 *    a<=t<=b, y1(a)=y01,y2(a)=y02,...,ym(a)=y0m.
 * at (n+1) equally spaced numbers in the interval
 * [a,b].
 */
#include <stdio.h>
#include <math.h>

#define f1(y1,y2,t)   (y2)
#define f2(y1,y2,t)   ((-4.0*y2-4.0*y1)+4*cos(t)+3*sin(t))

void main()
{
   int i=0,j,n=4,m=2;
   double t,a=0.0,b=0.4,h,k1[10],k2[10],y[10],y0[10];
   h=(b-a)/n;
   t=a;
   y0[1]=1.0;
   y0[2]=0.0;
 
   for(j=1;j<=m;j++)
      y[j]=y0[j];
     
   printf("\ni =%1d \n",i); 
   printf("t         y1         y2 \n");
   printf("=============================\n");
   printf("%.2lf %10.8lf %10.8lf \n",t,y0[1],y0[2]);
   for(i=1;i<=n;i++)
   {
       
        printf("\ni =%1d \n",i);
        for(j=1;j<=m;j++)
        {
        if(j==1)
            k1[j]=h*f1(0,y[j+1],0);
        else if(j==2)
                k1[j]=h*f2(y[j-1],y[j],t);
               
            printf("====================\n");
            printf("t         k1%1d\n",j);
            printf("%.2lf %10.8lf  \n",t,k1[j]);   
        }
     
        for(j=1;j<=m;j++)
        {
        if(j==1)
                k2[j]=h*f1(0,(y[j+1]+k1[j+1]),0);
        else if(j==2)
            k2[j]=h*f2((y[j-1]+k1[j-1]),(y[j]+k1[j]),(t+h));
           
            printf("====================\n");
            printf("t         k2%1d\n",j);
            printf("%.2lf %10.8lf  \n",t+h,k2[j]);               
           
        }

        for(j=1;j<=m;j++)
        y[j]=y[j]+0.5*(k1[j]+k2[j]);
     
        t=a+i*h;
        if(i%1==0)
            {
                printf("\nt         y1         y2 \n");
                printf("=============================\n");
                printf("%.2lf %10.8lf %10.8lf\n\n",t,y[1],y[2]);
            }
   }
   return;
}



輸出畫面
i =0
t         y1         y2
=============================
0.00 1.00000000 0.00000000

i =1
====================
t         k11
0.00 0.00000000 
====================
t         k12
0.00 0.00000000 
====================
t         k21
0.10 0.00000000 
====================
t         k22
0.10 0.02795169 

t         y1         y2
=============================
0.10 1.00000000 0.01397585


i =2
====================
t         k11
0.10 0.00139758 
====================
t         k12
0.10 0.02236135 
====================
t         k21
0.20 0.00363372 
====================
t         k22
0.20 0.03653352 

t         y1         y2
=============================
0.20 1.00251565 0.04342328


i =3
====================
t         k11
0.20 0.00434233 
====================
t         k12
0.20 0.03325186 
====================
t         k21
0.30 0.00766751 
====================
t         k22
0.30 0.03737741 

t         y1         y2
=============================
0.30 1.00852057 0.07873791


i =4
====================
t         k11
0.30 0.00787379 
====================
t         k12
0.30 0.03588726 
====================
t         k21
0.40 0.01146252 
====================
t         k22
0.40 0.03284208 

t         y1         y2
=============================
0.40 1.01818873 0.11310259

數值分析 Numerical Mathematics and Computing Fifth Edition

Numerical Mathematics and Computing
Fifth Edition

源自
https://web.ma.utexas.edu/CNA/NMC5/nmc5-C.html


Numerical Mathematics and Computing
Fifth Edition
Ward Cheney & David Kincaid
Sample C Codes


In the following table, each line/entry contains the program file name, the page number where it can be found in the textbook, and a brief description. Click on the program name to display the source code, which can be downloaded.
Chapter 1: Introduction
first.c6-7First programming experiment
double_first.c6-7First programming experiment (doulbe precision version)
pi.c8Simple code to illustrate double precision
Chapter 2: Number Representation and Errors
xsinx.c77-79Example of programming f(x) = x - sinx carefully
Chapter 3: Locating Roots of Equations
bisection.c94-95Bisection method
rec_bisection.c95-96Recursive version of bisection method
newton.c106-107Sample Newton method
secant.c127Secant method
Chapter 4: Interpolation and Numerical Differentiation
coef.c152-155Newton interpolation polynomial at equidistant pts
deriv.c185-186Derivative by center differences/Richardson extrapolation
Chapter 5: Numerical Integration
sums.c200Upper/lower sums experiment for an integral
trapezoid.c207Trapezoid rule experiment for an integral
romberg.c223-224Romberg arrays for three separate functions
Chapter 6: More on Numerical Integration
rec_simpson.c241Adaptive scheme for Simpson's rule
Chapter 7: Systems of Linear Equations
ngauss.c270-271Naive Gaussian elimination to solve linear systems
gauss.c285-287Gaussian elimination with scaled partial pivoting
tri.c301-302Solves tridiagonal systems
penta.c204Solves pentadiagonal linear systems
Chapter 8: More on Systems of Linear Equations
Chapter 9: Approximation by Spline Functions
spline1.c385Interpolates table using a first-degree spline function
spline3.c404-406Natural cubic spline function at equidistant points
spline2.c427-428Interpolates table using a quadratic B-spline function
schoenberg.c430-431Interpolates table using Schoenberg's process
Chapter 10: Ordinary Differential Equations
euler.c448-449Euler's method for solving an ODE
taylor.c451Taylor series method (order 4) for solving an ODE
rk4.c462-463Runge-Kutta method (order 4) for solving an IVP
rk45.c472-473Runge-Kutta-Fehlberg method for solving an IVP
mainrk45.c474Runge-Kutta-Fehlberg method for solving an IVP (main program)
rk45ad.c474Adaptive Runge-Kutta-Fehlberg method
Chapter 11: Systems of Ordinary Differential Equations
taylorsys.c489-491Taylor series method (order 4) for systems of ODEs
rk4sys.c491-493, 496Runge-Kutta method (order 4) for systems of ODEs
amrk.c510-513Adams-Moulton method for systems of ODEs
amrkad.c513Adaptive Adams-Moulton method for systems of ODEs
Chapter 12: Smoothing of Data and the Method of Least Squares
Chapter 13: Monte Carlo Methods and Simulation
test_random.c5652-563Example to compute, store, and print random numbers
coarse_check.c564Coarse check on the random-number generator
double_integral.c574-575Volume of a complicated 3D region by Monte Carlo
volume_region.c575-576Numerical value of integral over a 2D disk by Monte Carlo
cone.c576-576Ice cream cone example
loaded_die.c581Loaded die problem simulation
birthday.c583Birthday problem simulation
needle.c584Buffon's needle problem simulation
two_die.c585Two dice problem simulation
shielding.c586-587Neutron shielding problem simulation
Chapter 14: Boundary Value Problems for Ordinary Differential Equations
bvp1.c602-603Boundary value problem solved by discretization technique
bvp2.c605-606Boundary value problem solved by shooting method
Chapter 15: Partial Differential Equations
parabolic1.c618-619Parabolic partial differential equation problem
parabolic2.c620-621Parabolic PDE problem solved by Crank-Nicolson method
hyperbolic.c633-634Hyperbolic PDE problem solved by discretization
seidel.c642-645Elliptic PDE solved by discretization/ Gauss-Seidel method
Chapter 16: Minimization of Functions
Chapter 17: Linear Programming
Addditional programs can be found at the textbook's anonymous ftp site:
ftp://ftp.ma.utexas.edu/pub/cheney-kincaid/

[Home][Features][TOC][Purchase][ Sample Code][ Web][ Manuals][Errata][Links]


 Last updated: 5/20/2003

C語言 例題5-6 四階 Runge-Kutta 解 ODE y'= -y + t^2 + 1 , 0<=t<=1 , y(0)=1 , 真實解 W(t)= -2e^(-t) + t ^2 - 2t + 3

C語言 例題5-6  四階 Runge-Kutta 解 ODE y'= -y + t^2 + 1 , 0<=t<=1 , y(0)=1 , 真實解 W(t)= -2e^(-t) + t ^2 - 2t + 3


/* ex5-6.c based on Four-Order Runge-Kutta
 * Method to approximate the solution of the
 * initial-value problem
 *   y'=f(y,t), a<=t<=b, y(a)=y0
 * at (n+1) equally spaced numbers in the interval
 * [a,b]: input a,b,n,and initial condition y0.
 */
 #include <stdio.h>
 #include <math.h>
 #define  F(y,t)   (-y+t*t+1)
 #define  W(t)     (-2*(1/exp(t))+pow(t,2)-2*t+3)
 void main()
 {
    int i,n=100;
    double a=0.0,b=1.0,y0=1.0,k1,k2,k3,k4,h,t,y,err;
    h=(b-a)/n;
    t=a;
    y=y0;
    err=fabs(y-W(t));
    printf("t      y(t)       w(t)      error\n");
    printf("=====================================\n");
    printf("%.2lf %10.7lf %10.7lf %10.7lf\n",t,y,W(t),err);
    for(i=1;i<=n;i++)
    {
       k1=h*F(y,t);
       k2=h*F((y+k1/2.0),(t+h/2.0));
       k3=h*F((y+k2/2.0),(t+h/2.0));
       k4=h*F((y+k3),(t+h));

       y=y+(k1+2*k2+2*k3+k4)/6.0;

       t=a+i*h;
       err=fabs(y-W(t));
       if(i%10==0)
          printf("%.2lf %10.7lf %10.7lf %10.7lf\n",t,y,W(t),err);
    }
    return;
}


輸出畫面
t      y(t)       w(t)      error
=====================================
0.00  1.0000000  1.0000000  0.0000000
0.10  1.0003252  1.0003252  0.0000000
0.20  1.0025385  1.0025385  0.0000000
0.30  1.0083636  1.0083636  0.0000000
0.40  1.0193599  1.0193599  0.0000000
0.50  1.0369387  1.0369387  0.0000000
0.60  1.0623767  1.0623767  0.0000000
0.70  1.0968294  1.0968294  0.0000000
0.80  1.1413421  1.1413421  0.0000000
0.90  1.1968607  1.1968607  0.0000000
1.00  1.2642411  1.2642411  0.0000000

Command exited with non-zero status 101

C語言 例題5-5.c 使用 二階Runge-Kutta 解 ODE y'= -y + t^2 + 1 , 0<=t<=1 , y(0)=1 , 真實解 W(t)= -2e^(-t) + t ^2 - 2t + 3

C語言 例題5-5 使用 二階Runge-Kutta  解 ODE y'= -y + t^2 + 1 , 0<=t<=1 , y(0)=1 , 真實解 W(t)= -2e^(-t) + t ^2 - 2t + 3

/* ex5-5.c Second Order Runge-Kutta Method is used
 * for solving Ordinary Differential Equation of
 * y'=f(y,t) with initial condition of y(t0)=y0.
 */
#include <stdio.h>
#include <math.h>
#define F(y,t)   (-y+t*t+1)
#define W(t)     (-2*(1.0/exp(t))+pow(t,2)-2*t+3)
void main()
{
   int i,n=100;
   double h,a=0.0,b=1.0,t0,t,y0=1.0,y,k1,k2;

   h=(b-a)/n;
   y=y0;
   t0=a;
   t=t0;
   printf("t      y(t)       w(t)       error\n");
   printf("=====================================\n");
   printf("%.2lf %10.7lf %10.7lf %10.7lf\n", t,y,W(t),fabs(y-W(t)));
   for(i=1;i<=n;i++)
   {

      k1=h*F(y,t);
      k2=h*F((y+k1),(t+h));
      y=y+0.5*(k1+k2);

      t=t+h;
      if(i%10==0)
         printf("%.2lf %10.7lf %10.7lf %10.7lf\n", t,y,W(t),fabs(y-W(t)));
   }
   return;
}

輸出畫面
t      y(t)       w(t)       error
=====================================
0.00  1.0000000  1.0000000  0.0000000
0.10  1.0003269  1.0003252  0.0000017
0.20  1.0025421  1.0025385  0.0000036
0.30  1.0083691  1.0083636  0.0000056
0.40  1.0193675  1.0193599  0.0000076
0.50  1.0369483  1.0369387  0.0000096
0.60  1.0623883  1.0623767  0.0000116
0.70  1.0968430  1.0968294  0.0000136
0.80  1.1413577  1.1413421  0.0000156
0.90  1.1968782  1.1968607  0.0000175
1.00  1.2642605  1.2642411  0.0000194

Command exited with non-zero status 101

2019年4月28日 星期日

C語言 例題5-4 二階 Runge-Kutta 解ODE y'= -y + t +1 , 0<=t <= 1 , y(1)=?

C語言 例題5-4  二階 Runge-Kutta 解ODE y'= -y + t +1  ,  0<=t <= 1  ,  y(1)=?
#include<stdio.h>
#include <math.h>

/*
Enter the value of x0: 0
Enter the value of y0: 2
Enter the value of h: 0.05
Enter the value of last point: 0.1
*/
//dy/dx = y - x
#define F(x,y)  (-y+x+1)
void main()
{
  double y0,x0,y1,n,h,f,f1,k1,k2;
  int i=0;

  x0=0.0;
  y0=1.0;
  h=0.2;
  n=1.0;
  printf("\nEnter the value of x0:%1.2lf",x0 );
  printf("\nEnter the value of y0:%1.2lf",y0 );
  printf("\nEnter the value of h:%1.2lf",h );
  printf("\nEnter the value of last point:%1.2lf",n);

  for(; x0<n; x0=x0+h)
  {
    f=F(x0,y0);
    k1 = h * f;
    f1 = F(x0+h,y0+k1);
    k2 = h * f1;
    y1 = y0 + ( k1 + k2)/2;
    printf("\n i  = %2d ",i);
    printf("\n k1 = %.4lf ",k1);
    printf("\n k2 = %.4lf ",k2);
    printf("\n y(%.4lf) = %.3lf ",x0+h,y1);
    y0=y1;
    i++;
  }
}


輸出畫面
Enter the value of x0:0.00
Enter the value of y0:1.00
Enter the value of h:0.20
Enter the value of last point:1.00
 i  =  0
 k1 = 0.0000
 k2 = 0.0400
 y(0.2000) = 1.020
 i  =  1
 k1 = 0.0360
 k2 = 0.0832
 y(0.4000) = 1.080
 i  =  2
 k1 = 0.0641
 k2 = 0.1169
 y(0.6000) = 1.170
 i  =  3
 k1 = 0.0860
 k2 = 0.1432
 y(0.8000) = 1.285
 i  =  4
 k1 = 0.1031
 k2 = 0.1637
 y(1.0000) = 1.418

C語言 4階 Runge-Kutta Method 求ODE y'= (x-y)/(x+y) y(2) = ??

C語言  例題 5-4  4階 Runge-Kutta Method 求ODE  y'=  (x-y)/(x+y)  y(2) = ??
4th Order Runge-Kutta Method
源自
http://boson4.phys.tku.edu.tw/numerical_methods/nm_units/ODE_Runge-Kutta.htm

最常用且通用的 RK 方法是四階的,我們可以想見它是由更多不同樣式的半步組合所構成,其中並包含了原有的起點處定斜率與終點處定斜率,請注意這裏 k1、k2、k3、k4 的定義與其相依性(即 k4 用到 k3、k3 用到 k2、k2 用到 k1 的狀況)
(事實上)這裏的圖是有印錯的情況,我認為 2 與 3 的標注處應該對調,公式中的 k1、k2、k3、k4 全部都有 h ,但分別是乘以 (a) 在起點處 1 求的斜率、(b) 以起點斜率走半步到 2 處求斜率、(c) 一樣從起點開始但,改採前面的半步處 2 之斜率,重走半步到 3 後求斜率,以及最後 (d) 採用上一個於 3 處所獲得的斜率,從起點出發走一整步到 4 處求斜率。


#include<stdio.h>
#include<math.h>
float f(float x,float y);
int main()
{
    float x0,y0,m1,m2,m3,m4,m,y,x,h,xn;
    x0=0.0;
    y0=2.0;
    xn=2.0;
    h=0.5;
    printf("x0=%1.1lf ,y0=%1.1lf ,xn=%1.1lf ,h=%1.1lf",x0,y0,xn,h);
   
    x=x0;
    y=y0;
    printf("\n\nX\t\t        Y\n");
    printf("======================\n");
   
    while(x<xn)
    {
        m1=f(x0,y0);
        m2=f((x0+h/2.0),(y0+m1*h/2.0));
        m3=f((x0+h/2.0),(y0+m2*h/2.0));
        m4=f((x0+h),(y0+m3*h));
        m=((m1+2*m2+2*m3+m4)/6);
        y=y+m*h;
        x=x+h;
        printf("%f\t%f\n",x,y);
    }
}
float f(float x,float y)
{
    float m;
    m=(x-y)/(x+y);
    return m;
}

輸出畫面
x0=0.0 ,y0=2.0 ,xn=2.0 ,h=0.5

X         Y
======================
0.500000 1.621356
1.000000 1.242713
1.500000 0.864069
2.000000 0.485426

C語言 例題5-3 使用 Euler修正法 ,求ODE y'=y+2 e^(4t) y(0)=-3 , 0<= t <=1 y(1)=??

C語言 例題5-3 使用 Euler修正法 ,求ODE
 y'=y+2 e^(4t) y(0)=-3 , 0<= t <=1


// C code for solving the differential equation
// using Predictor-Corrector or Modified-Euler method
// with the given conditions, y(0) = 0.5, step size(h) = 0.2
// to find y(1)
 
#include <stdio.h>
#include <math.h>

// consider the differential equation
// for a given x and y, return v
double f(double x, double y)
{
    double v = y + 2 * exp(4*x) ;
    return v;
}
 
// predicts the next value for a given (x, y)
// and step size h using Euler method
double predict(double x, double y, double h)
{
    // value of next y(predicted) is returned
    double y1p = y + h * f(x, y);
    return y1p;
}
 
// corrects the predicted value
// using Modified Euler method
double correct(double x, double y, double x1, double y1,double h)
{
    // (x, y) are of previous step
    // and x1 is the increased x for next step
    // and y1 is predicted y for next step
    double e = 0.00001;
    double y1c = y1;
 
    do {
        y1 = y1c;
        y1c = y + 0.5 * h * (f(x, y) + f(x1, y1));
    } while (fabs(y1c - y1) > e);
 
    // every iteration is correcting the value
    // of y using average slope
    return y1c;
}
 
void printFinalValues(double x, double xn, double y, double h)
{
    int i=1;
    while (x < xn) {
        double x1 = x + h;
        double y1p = predict(x, y, h);
        double y1c = correct(x, y, x1, y1p, h);
        if (i%10==0)
            {
                printf(" predict----The value of y , at x = %2.4lf is :%2.4lf\n " ,x1 ,y1p);
                printf(" correct----The value of y , at x = %2.4lf is :%2.4lf\n " ,x1 ,y1c);
            }
        x = x1;
        y = y1c;
        i++;
    }
 
    // at every iteration first the value
    // of for next step is first predicted
    // and then corrected.
    printf("\n\nThe final value of y  , at x = %2.4lf is :%2.4lf " ,x ,y);
}
 
int main()
{
    // here x and y are the initial
    // given condition, so x=0 and y=0.5
    double x = 0, y = -3;
 
    // final value of x for which y is needed
    double xn = 1;
 
    // step size
    double h = 0.01; 
    printFinalValues(x, xn, y, h);
 
    return 0;
}


   輸出畫面
  predict----The value of y , at x = 0.1000 is :-3.0583 ---修正前
  correct----The value of y , at x = 0.1000 is :-3.0577 ---修正後

  predict----The value of y , at x = 0.2000 is :-2.9956
  correct----The value of y , at x = 0.2000 is :-2.9947

  predict----The value of y , at x = 0.3000 is :-2.7373
  correct----The value of y , at x = 0.3000 is :-2.7359

  predict----The value of y , at x = 0.4000 is :-2.1699
  correct----The value of y , at x = 0.4000 is :-2.1676

  predict----The value of y , at x = 0.5000 is :-1.1222
  correct----The value of y , at x = 0.5000 is :-1.1186

  predict----The value of y , at x = 0.6000 is :0.6633
  correct----The value of y , at x = 0.6000 is :0.6687

  predict----The value of y , at x = 0.7000 is :3.5728
  correct----The value of y , at x = 0.7000 is :3.5810

  predict----The value of y , at x = 0.8000 is :8.1849
  correct----The value of y , at x = 0.8000 is :8.1973

  predict----The value of y , at x = 0.9000 is :15.3656
  correct----The value of y , at x = 0.9000 is :15.3843

  predict----The value of y , at x = 1.0000 is :26.4097
  correct----The value of y , at x = 1.0000 is :26.4378


  The final value of y  , at x = 1.0000 is :26.4378


The final value of y  , at x = 1.0000 is :26.4378

C語言 例題5-3 利用Euler修正法求ODE y' = y -2x^2 +1 , y(1) = ?

Euler修正法 
For a given differential equation \frac{dy}{dx}=f(x, y) with initial condition y(x_0)=y_0
find the approximate solution using Predictor-Corrector method.
Predictor-Corrector Method :
The predictor-corrector method is also known as Modified-Euler method.
In the Euler method, the tangent is drawn at a point and slope is calculated for a given step size. Thus this method works best with linear functions, but for other cases, there remains a truncation error. To solve this problem the Modified Euler method is introduced. In this method instead of a point, the arithmetic average of the slope over an interval (x_t, x_{t+1}) is used.
Thus in the Predictor-Corrector method for each step the predicted value of y_{t+1}is calculated first using Euler’s method and then the slopes at the points (x_t, y_t)and (x_{t+1}, y_{t+1}) is calculated and the arithmetic average of these slopes are added to y_t to calculate the corrected value of y_{t+1}.
So,
  • Step – 1 : First the value is predicted for a step(here t+1) :y_{t+1, p} = y_t + h*f(x_t, y_t),
    here h is step size for each increment
  • Step – 2 : Then the predicted value is corrected :y_{t+1, c} = y_t + h*\frac{f(x_t, y_t)+f(x_{t+1}, y_{t+1, p})}{2}
  • Step – 3 : The incrementation is done :x_{t+1}=x_t+h, t=t+1
  • Step – 4 : Check for continuation, if x_{t}<x_{n} then go to step – 1.
  • Step – 5 : Terminate the process.
  • As, in this method, the average slope is used, so the error is reduced significantly. Also, we can repeat the process of correction for convergence. Thus at every step, we are reducing the error thus by improving the value of y.

    Input : eq = \frac {dy}{dx} = y-2x^2+1, y(0) = 0.5, step size(h) = 0.2
    To find: y(1) 
    Output: y(1) = 2.18147

    // C++ code for solving the differential equation 
    // using Predictor-Corrector or Modified-Euler method 
    // with the given conditions, y(0) = 0.5, step size(h) = 0.2 
    // to find y(1) 
      
    #include <bits/stdc++.h> 
    using namespace std; 
      
    // consider the differential equation 
    // for a given x and y, return v 
    double f(double x, double y) 
        double v = y - 2 * x * x + 1; 
        return v; 
      
    // predicts the next value for a given (x, y) 
    // and step size h using Euler method 
    double predict(double x, double y, double h) 
        // value of next y(predicted) is returned 
        double y1p = y + h * f(x, y); 
        return y1p; 
      
    // corrects the predicted value 
    // using Modified Euler method 
    double correct(double x, double y, 
                   double x1, double y1, 
                   double h) 
        // (x, y) are of previous step 
        // and x1 is the increased x for next step 
        // and y1 is predicted y for next step 
        double e = 0.00001; 
        double y1c = y1; 
      
        do { 
            y1 = y1c; 
            y1c = y + 0.5 * h * (f(x, y) + f(x1, y1)); 
        } while (fabs(y1c - y1) > e); 
      
        // every iteration is correcting the value 
        // of y using average slope 
        return y1c; 
      
    void printFinalValues(double x, double xn, 
                          double y, double h) 
      
        while (x < xn) { 
            double x1 = x + h; 
            double y1p = predict(x, y, h); 
            double y1c = correct(x, y, x1, y1p, h); 
            x = x1; 
            y = y1c; 
        } 
      
        // at every iteration first the value 
        // of for next step is first predicted 
        // and then corrected. 
        cout << "The final value of y at x = "
             << x << " is : " << y << endl; 
      
    int main() 
        // here x and y are the initial 
        // given condition, so x=0 and y=0.5 
        double x = 0, y = 0.5; 
      
        // final value of x for which y is needed 
        double xn = 1; 
      
        // step size 
        double h = 0.2; 
      
        printFinalValues(x, xn, y, h); 
      
        return 0; 
    }

    輸出畫面
    The final value of y at x = 1 is : 2.18147                                                                                     ...Program finished with exit code 0                                                                                                                          
    Press ENTER to exit console.                                                                                                      
    C語言
    // C code for solving the differential equation 
    // using Predictor-Corrector or Modified-Euler method 
    // with the given conditions, y(0) = 0.5, step size(h) = 0.2 
    // to find y(1) 
      
    #include <stdio.h>
    #include <math.h>

    // consider the differential equation 
    // for a given x and y, return v 
    double f(double x, double y) 
        double v = y - 2 * x * x + 1; 
        return v; 
      
    // predicts the next value for a given (x, y) 
    // and step size h using Euler method 
    double predict(double x, double y, double h) 
        // value of next y(predicted) is returned 
        double y1p = y + h * f(x, y); 
        return y1p; 
      
    // corrects the predicted value 
    // using Modified Euler method 
    double correct(double x, double y, double x1, double y1,double h) 
        // (x, y) are of previous step 
        // and x1 is the increased x for next step 
        // and y1 is predicted y for next step 
        double e = 0.00001; 
        double y1c = y1; 
      
        do { 
            y1 = y1c; 
            y1c = y + 0.5 * h * (f(x, y) + f(x1, y1)); 
        } while (fabs(y1c - y1) > e); 
      
        // every iteration is correcting the value 
        // of y using average slope 
        return y1c; 
      
    void printFinalValues(double x, double xn, double y, double h) 
      
        while (x < xn) { 
            double x1 = x + h; 
            double y1p = predict(x, y, h); 
            double y1c = correct(x, y, x1, y1p, h); 
            x = x1; 
            y = y1c; 
        } 
      
        // at every iteration first the value 
        // of for next step is first predicted 
        // and then corrected. 
        printf("The final value of y  , at x = %2.4lf is :%2.4lf " ,x ,y); 
      
    int main() 
        // here x and y are the initial 
        // given condition, so x=0 and y=0.5 
        double x = 0, y = 0.5; 
      
        // final value of x for which y is needed 
        double xn = 1; 
      
        // step size 
        double h = 0.2; 
      
        printFinalValues(x, xn, y, h); 
      
        return 0; 
    }
                                
                                   

    2024年4月24日 星期三 Node-Red Dashboard UI Template + AngularJS 參考 AngularJS教學 --2

     2024年4月24日 星期三 Node-Red Dashboard UI Template + AngularJS 參考 AngularJS教學 --2 AngularJS 實例 <!DOCTYPE html> <html> <head> &...