2019年4月30日 星期二

C語言 例題5-6 四階 Runge-Kutta 解 ODE y'= -y + t^2 + 1 , 0<=t<=1 , y(0)=1 , 真實解 W(t)= -2e^(-t) + t ^2 - 2t + 3

C語言 例題5-6  四階 Runge-Kutta 解 ODE y'= -y + t^2 + 1 , 0<=t<=1 , y(0)=1 , 真實解 W(t)= -2e^(-t) + t ^2 - 2t + 3


/* ex5-6.c based on Four-Order Runge-Kutta
 * Method to approximate the solution of the
 * initial-value problem
 *   y'=f(y,t), a<=t<=b, y(a)=y0
 * at (n+1) equally spaced numbers in the interval
 * [a,b]: input a,b,n,and initial condition y0.
 */
 #include <stdio.h>
 #include <math.h>
 #define  F(y,t)   (-y+t*t+1)
 #define  W(t)     (-2*(1/exp(t))+pow(t,2)-2*t+3)
 void main()
 {
    int i,n=100;
    double a=0.0,b=1.0,y0=1.0,k1,k2,k3,k4,h,t,y,err;
    h=(b-a)/n;
    t=a;
    y=y0;
    err=fabs(y-W(t));
    printf("t      y(t)       w(t)      error\n");
    printf("=====================================\n");
    printf("%.2lf %10.7lf %10.7lf %10.7lf\n",t,y,W(t),err);
    for(i=1;i<=n;i++)
    {
       k1=h*F(y,t);
       k2=h*F((y+k1/2.0),(t+h/2.0));
       k3=h*F((y+k2/2.0),(t+h/2.0));
       k4=h*F((y+k3),(t+h));

       y=y+(k1+2*k2+2*k3+k4)/6.0;

       t=a+i*h;
       err=fabs(y-W(t));
       if(i%10==0)
          printf("%.2lf %10.7lf %10.7lf %10.7lf\n",t,y,W(t),err);
    }
    return;
}


輸出畫面
t      y(t)       w(t)      error
=====================================
0.00  1.0000000  1.0000000  0.0000000
0.10  1.0003252  1.0003252  0.0000000
0.20  1.0025385  1.0025385  0.0000000
0.30  1.0083636  1.0083636  0.0000000
0.40  1.0193599  1.0193599  0.0000000
0.50  1.0369387  1.0369387  0.0000000
0.60  1.0623767  1.0623767  0.0000000
0.70  1.0968294  1.0968294  0.0000000
0.80  1.1413421  1.1413421  0.0000000
0.90  1.1968607  1.1968607  0.0000000
1.00  1.2642411  1.2642411  0.0000000

Command exited with non-zero status 101

沒有留言:

張貼留言

Messaging API作為替代方案

  LINE超好用功能要沒了!LINE Notify明年3月底終止服務,有什麼替代方案? LINE Notify將於2025年3月31日結束服務,官方建議改用Messaging API作為替代方案。 //CHANNEL_ACCESS_TOKEN = 'Messaging ...