/* ex1-5.java: Lagrange Interpolation Algorithm
* Read in data file of ex1-4.dat which has n point values
* and the value of interpolating point xa. Based on Lagrange
* Interpolation algorithm to compute p(xa) and output its value.
* (x[i],f[i]):given points and n+1 are number of points
* Ln,k(x)=l=summation of (x-x[i])/(x[k]-x[i]).
* p(x)=ff=L(x)*f(x[k])
*/
// 範例1-5 通過下面4點的Lagrange內插法求P(1.5) P(2.5) P(3.5) 之值?
import java.util.Scanner;
public class Main {
public static void main(String []args) {
Scanner scanner = new Scanner(System.in);
float[] x, f, xa ;
float l ,ff;
int i,k , m , n1 , n ;
x = new float[10]; // 利用new指令產生物件
f = new float[10]; // 利用new指令產生物件
xa = new float[10]; // 利用new指令產生物件
n1=scanner.nextInt();
//System.out.printf("n1=%2d",n1);
//System.out.println();
for(k=0;k<=n1;k++) {
//Scanner scanner = new Scanner(System.in);
xa[k]=scanner.nextFloat();
//System.out.printf("xa[k]=%2.3f",xa[k]);
//System.out.println();
}
n=scanner.nextInt();
//System.out.printf("n1=%2d",n);
//System.out.println();
for(k=0;k<=n;k++) {
//Scanner scanner = new Scanner(System.in);
x[k]=scanner.nextFloat();
f[k]=scanner.nextFloat();
//System.out.printf("x[k]=%2.3f, f[k]=%2.3f",x[k],f[k]);
//System.out.println();
}
for(m=0;m<=n1;m++){
ff=0;
for(k=0;k<=n;k++){
l=1;
i=0;
do{
if(i !=k) {
l=l*(xa[m]-x[i])/(x[k]-x[i]);
}
i=i+1;
//System.out.printf("l=%f n=%2d i=%2d",l, n, i);
//System.out.println();
} while (i<=n);
ff=ff+l*f[k];
//System.out.printf("l=%f k=%2d The value of p(%2.5f)=%2.5f",l, k,xa[m] ,ff);
//System.out.println();
}
System.out.printf("The value of p(%f)=%2.5f",xa[m] ,ff);
System.out.println();
}
}
}
STDIN
2
1.5
2.5
3.5
3
1.0 0.000
2.0 0.693
3.0 1.099
4.0 1.386
輸出畫面
$javac Main.java $java -Xmx128M -Xms16M Main The value of p(1.500000)=0.39288 The value of p(2.500000)=0.92138 The value of p(3.500000)=1.24688
沒有留言:
張貼留言