LFSR Linear Feedback Shift Register
// 需 Import pin assignments DE2_115_pin_assignments//=====================================================
// Verilog 硬體描述語言 HDL
// Ch08 RLinear Feedback Shift Register LFSR
//=====================================================
module LFSR(
input CLOCK_50, // 50 MHz clock
input [3:0] KEY, // Pushbutton[3:0]
input [17:0] SW, // Toggle Switch[17:0]
output [6:0] HEX0,HEX1,HEX2,HEX3,HEX4,HEX5,HEX6,HEX7, // Seven Segment Digits
output [8:0] LEDG, // LED Green
output [17:0] LEDR // LED Red
);
// blank unused 7-segment digits
//assign HEX0 = 7'b111_1111;
//assign HEX1 = 7'b111_1111;
//assign HEX2 = 7'b111_1111;
assign HEX3 = 7'b111_1111;
assign HEX4 = 7'b111_1111;
assign HEX5 = 7'b111_1111;
assign HEX6 = 7'b111_1111;
assign HEX7 = 7'b111_1111;
wire [7:0] segout0; //HEX 0
wire [7:0] segout1; //HEX 1
wire [7:0] segout2; //HEX 2
//wire [7:0] segout3; //HEX 3
// Setup clock divider
wire [6:0] myclock;
/*
divide_by_50 d6(clk_1Mhz,CLK,RST);
divide_by_10 d5(clk_100Khz,clk_1Mhz,RST);
divide_by_10 d4(clk_10Khz,clk_100Khz,RST);
divide_by_10 d3(clk_1Khz,clk_10Khz,RST);
divide_by_10 d2(clk_100hz,clk_1Khz,RST);
divide_by_10 d1(clk_10hz,clk_100hz,RST);
divide_by_10 d0(clk_1hz,clk_10hz,RST);
*/
clock_divider clkdiv(CLOCK_50,KEY[3],myclock);
//module clock_divider(CLK,RST,clock);
parameter c_NUM_BITS = 7;
wire [c_NUM_BITS-1:0]oLFSR;
assign LEDG[c_NUM_BITS-1:0]=oLFSR;
LFSR_test #(.NUM_BITS(c_NUM_BITS)) LFSR_inst
(.i_Clk(myclock[2]),
.i_Enable(myclock[0]),
//.i_Enable(KEY[0]),
.i_Seed_DV(SW[0]),
.i_Seed_Data({c_NUM_BITS{1'b0}}), // Replication
.o_LFSR_Data(oLFSR),
.o_LFSR_Done(LEDG[7])
);
// ====================================
//input [7:0] A;
//output [3:0] ONES, TENS;
//output [1:0] HUNDREDS;
wire[3:0] ones, tens;
wire[1:0] hundreds;
binary_to_BCD(oLFSR,ones,tens,hundreds);
hex_7seg u1(ones,segout0);
hex_7seg u2(tens,segout1);
hex_7seg u3(hundreds,segout2);
//input [3:0] hex_digit;
//output [6:0] seg;
assign HEX0=segout0;
assign HEX1=segout1;
assign HEX2=segout2;
endmodule
///////////////////////////////////////////////////////////////////////////////
// File downloaded from http://www.nandland.com
///////////////////////////////////////////////////////////////////////////////
// Description:
// A LFSR or Linear Feedback Shift Register is a quick and easy way to generate
// pseudo-random data inside of an FPGA. The LFSR can be used for things like
// counters, test patterns, scrambling of data, and others. This module
// creates an LFSR whose width gets set by a parameter. The o_LFSR_Done will
// pulse once all combinations of the LFSR are complete. The number of clock
// cycles that it takes o_LFSR_Done to pulse is equal to 2^g_Num_Bits-1. For
// example setting g_Num_Bits to 5 means that o_LFSR_Done will pulse every
// 2^5-1 = 31 clock cycles. o_LFSR_Data will change on each clock cycle that
// the module is enabled, which can be used if desired.
//
// Parameters:
// NUM_BITS - Set to the integer number of bits wide to create your LFSR.
///////////////////////////////////////////////////////////////////////////////
module LFSR_test #(parameter NUM_BITS)
(
input i_Clk,
input i_Enable,
// Optional Seed Value
input i_Seed_DV,
input [NUM_BITS-1:0] i_Seed_Data,
output [NUM_BITS-1:0] o_LFSR_Data,
output o_LFSR_Done
);
reg [NUM_BITS:1] r_LFSR = 0;
reg r_XNOR;
// Purpose: Load up LFSR with Seed if Data Valid (DV) pulse is detected.
// Othewise just run LFSR when enabled.
always @(posedge i_Clk)
begin
if (i_Enable == 1'b1)
begin
if (i_Seed_DV == 1'b1)
r_LFSR <= i_Seed_Data;
else
r_LFSR <= {r_LFSR[NUM_BITS-1:1], r_XNOR};
end
end
// Create Feedback Polynomials. Based on Application Note:
// http://www.xilinx.com/support/documentation/application_notes/xapp052.pdf
always @(*)
begin
case (NUM_BITS)
3: begin
r_XNOR = r_LFSR[3] ^~ r_LFSR[2];
end
4: begin
r_XNOR = r_LFSR[4] ^~ r_LFSR[3];
end
5: begin
r_XNOR = r_LFSR[5] ^~ r_LFSR[3];
end
6: begin
r_XNOR = r_LFSR[6] ^~ r_LFSR[5];
end
7: begin
r_XNOR = r_LFSR[7] ^~ r_LFSR[6];
end
8: begin
r_XNOR = r_LFSR[8] ^~ r_LFSR[6] ^~ r_LFSR[5] ^~ r_LFSR[4];
end
9: begin
r_XNOR = r_LFSR[9] ^~ r_LFSR[5];
end
10: begin
r_XNOR = r_LFSR[10] ^~ r_LFSR[7];
end
11: begin
r_XNOR = r_LFSR[11] ^~ r_LFSR[9];
end
12: begin
r_XNOR = r_LFSR[12] ^~ r_LFSR[6] ^~ r_LFSR[4] ^~ r_LFSR[1];
end
13: begin
r_XNOR = r_LFSR[13] ^~ r_LFSR[4] ^~ r_LFSR[3] ^~ r_LFSR[1];
end
14: begin
r_XNOR = r_LFSR[14] ^~ r_LFSR[5] ^~ r_LFSR[3] ^~ r_LFSR[1];
end
15: begin
r_XNOR = r_LFSR[15] ^~ r_LFSR[14];
end
16: begin
r_XNOR = r_LFSR[16] ^~ r_LFSR[15] ^~ r_LFSR[13] ^~ r_LFSR[4];
end
17: begin
r_XNOR = r_LFSR[17] ^~ r_LFSR[14];
end
18: begin
r_XNOR = r_LFSR[18] ^~ r_LFSR[11];
end
19: begin
r_XNOR = r_LFSR[19] ^~ r_LFSR[6] ^~ r_LFSR[2] ^~ r_LFSR[1];
end
20: begin
r_XNOR = r_LFSR[20] ^~ r_LFSR[17];
end
21: begin
r_XNOR = r_LFSR[21] ^~ r_LFSR[19];
end
22: begin
r_XNOR = r_LFSR[22] ^~ r_LFSR[21];
end
23: begin
r_XNOR = r_LFSR[23] ^~ r_LFSR[18];
end
24: begin
r_XNOR = r_LFSR[24] ^~ r_LFSR[23] ^~ r_LFSR[22] ^~ r_LFSR[17];
end
25: begin
r_XNOR = r_LFSR[25] ^~ r_LFSR[22];
end
26: begin
r_XNOR = r_LFSR[26] ^~ r_LFSR[6] ^~ r_LFSR[2] ^~ r_LFSR[1];
end
27: begin
r_XNOR = r_LFSR[27] ^~ r_LFSR[5] ^~ r_LFSR[2] ^~ r_LFSR[1];
end
28: begin
r_XNOR = r_LFSR[28] ^~ r_LFSR[25];
end
29: begin
r_XNOR = r_LFSR[29] ^~ r_LFSR[27];
end
30: begin
r_XNOR = r_LFSR[30] ^~ r_LFSR[6] ^~ r_LFSR[4] ^~ r_LFSR[1];
end
31: begin
r_XNOR = r_LFSR[31] ^~ r_LFSR[28];
end
32: begin
r_XNOR = r_LFSR[32] ^~ r_LFSR[22] ^~ r_LFSR[2] ^~ r_LFSR[1];
end
endcase // case (NUM_BITS)
end // always @ (*)
assign o_LFSR_Data = r_LFSR[NUM_BITS:1];
// Conditional Assignment (?)
assign o_LFSR_Done = (r_LFSR[NUM_BITS:1] == i_Seed_Data) ? 1'b1 : 1'b0;
endmodule // LFSR
//======================================
module binary_to_BCD(A,ONES,TENS,HUNDREDS);
input [7:0] A;
output [3:0] ONES, TENS;
output [1:0] HUNDREDS;
wire [3:0] c1,c2,c3,c4,c5,c6,c7;
wire [3:0] d1,d2,d3,d4,d5,d6,d7;
assign d1 = {1'b0,A[7:5]};
assign d2 = {c1[2:0],A[4]};
assign d3 = {c2[2:0],A[3]};
assign d4 = {c3[2:0],A[2]};
assign d5 = {c4[2:0],A[1]};
assign d6 = {1'b0,c1[3],c2[3],c3[3]};
assign d7 = {c6[2:0],c4[3]};
add3 m1(d1,c1);
add3 m2(d2,c2);
add3 m3(d3,c3);
add3 m4(d4,c4);
add3 m5(d5,c5);
add3 m6(d6,c6);
add3 m7(d7,c7);
assign ONES = {c5[2:0],A[0]};
assign TENS = {c7[2:0],c5[3]};
assign HUNDREDS = {c6[3],c7[3]};
endmodule
module add3(in,out);
input [3:0] in;
output [3:0] out;
reg [3:0] out;
always @ (in)
case (in)
4'b0000: out <= 4'b0000;
4'b0001: out <= 4'b0001;
4'b0010: out <= 4'b0010;
4'b0011: out <= 4'b0011;
4'b0100: out <= 4'b0100;
4'b0101: out <= 4'b1000;
4'b0110: out <= 4'b1001;
4'b0111: out <= 4'b1010;
4'b1000: out <= 4'b1011;
4'b1001: out <= 4'b1100;
default: out <= 4'b0000;
endcase
endmodule
//======================================
//++++++++++++++++++++++++++++++++++++++
module hex_7seg(hex_digit,seg);
input [3:0] hex_digit;
output [6:0] seg;
reg [6:0] seg;
// seg = {g,f,e,d,c,b,a};
// 0 is on and 1 is off
always @ (hex_digit)
case (hex_digit)
4'h0: seg = 7'b1000000;
4'h1: seg = 7'b1111001; // ---a----
4'h2: seg = 7'b0100100; // | |
4'h3: seg = 7'b0110000; // f b
4'h4: seg = 7'b0011001; // | |
4'h5: seg = 7'b0010010; // ---g----
4'h6: seg = 7'b0000010; // | |
4'h7: seg = 7'b1111000; // e c
4'h8: seg = 7'b0000000; // | |
4'h9: seg = 7'b0011000; // ---d----
4'ha: seg = 7'b0001000;
4'hb: seg = 7'b0000011;
4'hc: seg = 7'b1000110;
4'hd: seg = 7'b0100001;
4'he: seg = 7'b0000110;
4'hf: seg = 7'b0001110;
endcase
endmodule
//++++++++++++++++++++++++++++++++++++++
module clock_divider(CLK,RST,clock);
input CLK,RST;
output [6:0] clock;
wire clk_1Mhz,clk_100Khz,clk_10Khz,clk_1Khz,clk_100hz,clk_10hz,clk_1hz;
assign clock = {clk_1Mhz,clk_100Khz,clk_10Khz,clk_1Khz,clk_100hz,clk_10hz,clk_1hz};
divide_by_50 d6(clk_1Mhz,CLK,RST);
divide_by_10 d5(clk_100Khz,clk_1Mhz,RST);
divide_by_10 d4(clk_10Khz,clk_100Khz,RST);
divide_by_10 d3(clk_1Khz,clk_10Khz,RST);
divide_by_10 d2(clk_100hz,clk_1Khz,RST);
divide_by_10 d1(clk_10hz,clk_100hz,RST);
divide_by_10 d0(clk_1hz,clk_10hz,RST);
endmodule
module divide_by_10(Q,CLK,RST);
input CLK, RST;
output Q;
reg Q;
reg [2:0] count;
always @ (posedge CLK or negedge RST)
begin
if (~RST)
begin
Q <= 1'b0;
count <= 3'b000;
end
else if (count < 4)
begin
count <= count+1'b1;
end
else
begin
count <= 3'b000;
Q <= ~Q;
end
end
endmodule
module divide_by_50(Q,CLK,RST);
input CLK, RST;
output Q;
reg Q;
reg [4:0] count;
always @ (posedge CLK or negedge RST)
begin
if (~RST)
begin
Q <= 1'b0;
count <= 5'b00000;
end
else if (count < 24)
begin
count <= count+1'b1;
end
else
begin
count <= 5'b00000;
Q <= ~Q;
end
end
endmodule
沒有留言:
張貼留言