2019年1月23日 星期三

Modified Euler's Method


Modified Euler's Method :
The Euler forward scheme may be very easy to implement but it can't give accurate solutions.    A  very small step size is required for any meaningful result.  In this scheme, since, the starting point of each sub-interval is used to find the slope of the solution curve,  the solution would be correct only if the function is linear. So an improvement over this is to take the arithmetic average of the slopes at xi  and xi+1(that is, at the end points of each sub-interval). The scheme so obtained is called modified Euler's method. It works first by approximating a value to yi+1 and then improving it by making use of average slope.
yi+1= yi+ h/2 (y'i + y'i+1)
= yi + h/2(f(xi, yi) + f(xi+1, yi+1))
 If Euler's method is used to find the first approximation of yi+1 then
yi+1 = yi + 0.5h(fi  + f(xi+1, y+ hfi))
Truncation error:
yi+1 = yi + h y' + h2yi'' /2  + h3yi''' /3! + h4yiiv /4! + . . .
fi+1 = y'i+1  =  y'i + h y'' + h2yi'''' /2  + h3yiiv /3! + h4yiv /4! + . . .
By substituting these expansions in the Modified Euler formula gives
yi + h y' + h2yi'' /2  + h3yi''' /3! + h4yiiv /4! + . . . = yi+ h/2 (y'i + y'i + h y'' + 
                                                                                    h2yi'''' /2  + h3yiiv /3! + h4yiv /4! + . . . )
So the truncation error is: - h3yi''' /12 - h4yiiv /24 + . . .  that is, Modified Euler's method is of order two.

Worked out problems
Example 1Find   y(1.0)   accurate  upto  four decimal places using Modified Euler's method by solving the IVP  y' = -2xy2,  y(0) = 1 with step length 0.2.Solution
Example 2Find  y  in  [0,3] by solving the initial value problem y' = (x - y)/2,  y(0) = 1.  Compare solutions for h = 1/2, 1/4 and 1/8.Solution
Example 3Find y(0.1) for y' = x - y2,  y(0) = 1 correct upto four decimal places.Solution
Example 4Find y at x = 1.1 and 1.2 by solving y' = x2 + y2 ,  y(1) = 2.3Solution



Problems to workout


Solution of Transcendental Equations | Solution of Linear System of Algebraic Equations | Interpolation & Curve Fitting
Numerical Differentiation & Integration | Numerical Solution of Ordinary Differential Equations
Numerical Solution of Partial Differential Equations 

源自於
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/ode/euler/ie.html

沒有留言:

張貼留言

113 學年度第 1 學期 RFID應用課程 Arduino程式

113 學年度第 1 學期 RFID應用課程 Arduino程式 https://www.mediafire.com/file/zr0h0p3iosq12jw/MFRC522+(2).7z/file 內含修改過後的 MFRC522 程式庫 (原程式有錯誤) //定義MFRC522...