例題 6-2 利用 高斯--喬登理則 求線性代數解
* Based on Gauss-Jordan Method to
* solve n x n system of linear algebraic equations.
* Implementation for Gauss-Jordan Elimination Method
'''
n=3
#input the no. of equations
print("\nEnter the elements of the augmented-matrix row-wise:\n")
a=[[-1.0 , 1.0 , 2.0 , 2.0],
[3.0 , -1.0 , 1.0, 6.0],
[-1.0 , 3.0 , 4.0 , 4.0]]
for i in range (0,n) : #
for j in range (0, n+1) :
print( round( a[i][j],4),"\t",end='')
print("\n")
for i in range(0 ,n):
for j in range(0, n):
if(i!=j):
t=a[j][i]/a[i][i]
for k in range(0 , n+1):
a[j][k]=a[j][k]-(a[i][k]*t);
print("In Matrix form : \n");
for i in range (0,n) : #
for j in range (0, n+1) :
print( round( a[i][j],4),"\t",end='')
print("\n")
print("\n\nSolution is = ");
for i in range (0 , n ):
print(round(a[i][3]/a[i][i],4))
======== RESTART: F:/2018-09勤益科大數值分析/數值分析/PYTHON/EX6-2-1.py ============
Enter the elements of the augmented-matrix row-wise:
-1.0 1.0 2.0 2.0
3.0 -1.0 1.0 6.0
-1.0 3.0 4.0 4.0
In Matrix form :
-1.0 0.0 0.0 -1.0
0.0 2.0 0.0 -2.0
0.0 0.0 -5.0 -10.0
Solution is =
1.0
-1.0
2.0
>>>
沒有留言:
張貼留言