例題 5-10 利用 四階 Runge-Kutta 解 三個聯立常微分程式
y1' = y2 - y3 + t , y1(0)=1
y2' = 3t^2 , y2(0)=1 , 0<= t <=1
y3' = y2 + esp (-t) , y3(0)=-1
真實解
W1(t) = -0.05 t^5 + 0.25t^4 + t + 2 - exp(-t)
W2(t) = t^3 +1
W3(t) = 0.25 t^4 + t - exp(-t)
0<= t <=1 計算 y1(x) , y2(x) , y3(t) 設 h=0.1 , 0.01
/* ex5-10.c based on Fourth-Order Runge-Kutta Method
* to approximate the solution of the m=3 order
* system of first-order initial-value problem.
* y1=f1(y1,y2,...,ym,t)
* y2=f2(y1,y2,...,ym,t)
* .
* .
* ym=fm(y1,y2,...,ym,t)
* a<=t<=b, y1(a)=y01,y2(a)=y02,...,ym(a)=y0m.
* at (n+1) equally spaced numbers in the interval
* [a,b].
*/
'''
import math
def f1(y1,y2,y3,t):
return (y2-y3+t)
def f2(y1,y2,y3,t):
return (3*pow(t,2))
def f3(y1,y2,y3,t):
return (y2+(1.0/math.exp(t)))
def w1(t):
return (-0.05*pow(t,5)+0.25*pow(t,4)+t+2.0-(1.0/math.exp(t)))
def w2(t):
return (pow(t,3)+1.0)
def w3(t):
return (0.25*pow(t,4)+t-(1.0/math.exp(t)))
#======== main========
n=10
m=3
a=0.0
b=1.0
k1=[ 0.0 for i in range (11) ]
k2=[ 0.0 for i in range (11) ]
k3=[ 0.0 for i in range (11) ]
k4=[ 0.0 for i in range (11) ]
y=[ 0.0 for i in range (11) ]
y0=[ 0.0 for i in range (11) ]
h=(b-a)/n
t=a
y0[1]=1.0
y0[2]=1.0
y0[3]=-1.0
for j in range (1 , m +1 ):
y[j]=y0[j]
print("t \t y1 \t |y1-w1(t)| \ty2 \t |y2-w2(t)| \t y3 \t |y3-w3(t)|");
for j in range (0,78):
print('=',end='')
print()
print("{%.2f} \t {%10.7f} \t {%10.7f} \t {%10.7f} \t {%10.7f}\t {%10.7f}\t {%10.7f}" %(t,y0[1],abs(y0[1]-w1(t)),y0[2],abs(y0[2]-w2(t)) ,y0[3],abs(y0[3]-w3(t)) ))
for i in range (1,n+1):
for j in range(1 , m+1):
if(j==1):
k1[j]=h*f1((y[j]),(y[j+1]),(y[j+2]),t);
elif(j==2):
k1[j]=h*f2((y[j-1]),(y[j]),(y[j+1]),t);
elif(j==3):
k1[j]=h*f3((y[j-2]),(y[j-1]),(y[j]),t);
for j in range (1 , m+1):
if(j==1):
k2[j]=h*f1((y[j]+0.5*k1[j]),(y[j+1]+0.5*k1[j+1]),(y[j+2]+0.5*k1[j+2]),(t+0.5*h))
elif(j==2):
k2[j]=h*f2((y[j-1]+0.5*k1[j-1]),(y[j]+0.5*k1[j]),(y[j+1]+0.5*k1[j+1]),(t+0.5*h))
elif(j==3):
k2[j]=h*f3((y[j-2]+0.5*k1[j-2]),(y[j-1]+0.5*k1[j-1]),(y[j]+0.5*k1[j]),(t+0.5*h));
for j in range (1 , m+1):
if(j==1):
k3[j]=h*f1((y[j]+0.5*k2[j]),(y[j+1]+0.5*k2[j+1]),(y[j+2]+0.5*k2[j+2]),(t+0.5*h))
elif(j==2):
k3[j]=h*f2((y[j-1]+0.5*k2[j-1]),(y[j]+0.5*k2[j]),(y[j+1]+0.5*k2[j+1]),(t+0.5*h))
elif(j==3):
k3[j]=h*f3((y[j-2]+0.5*k2[j-2]),(y[j-1]+0.5*k2[j-1]),(y[j]+0.5*k2[j]),(t+0.5*h))
for j in range (1 , m+1):
if(j==1):
k4[j]=h*f1((y[j]+k3[j]),(y[j+1]+k3[j+1]),(y[j+2]+k3[j+2]),(t+h))
elif(j==2):
k4[j]=h*f2((y[j-1]+k3[j-1]),(y[j]+k3[j]),(y[j+1]+k3[j+1]),(t+h))
elif(j==3):
k4[j]=h*f3((y[j-2]+k3[j-2]),(y[j-1]+k3[j-1]),(y[j]+k3[j]),(t+h))
for j in range (1 , m+1):
y[j]=y[j]+((k1[j]+2.0*k2[j]+2.0*k3[j]+k4[j])/6.0)
t=a+i*h;
if(i%1==0):
print("{%.2f} \t {%10.7f} \t {%10.7f} \t {%10.7f} \t {%10.7f}\t {%10.7f}\t {%10.7f}" %(t,y[1],abs(y[1]-w1(t)),y[2],abs(y[2]-w2(t)) ,y[3],abs(y[3]-w3(t)) ))
#======== main========
n=10
if(i%1==0):
#======== main========
n=100
if(i%10==0):
========= RESTART: F:/2018-09勤益科大數值分析/數值分析/PYTHON/EX5-10.py ===========
t y1 |y1-w1(t)| y2 |y2-w2(t)| y3 |y3-w3(t)|
=========================================================
{0.00} { 1.0000000} { 0.0000000} { 1.0000000} { 0.0000000} {-1.0000000} { 0.0000000}
{0.10} { 1.1951869} { 0.0000001} { 1.0010000} { 0.0000000} {-0.8048124} { 0.0000000}
{0.20} { 1.3816530} { 0.0000003} { 1.0080000} { 0.0000000}{-0.6183307} { 0.0000000}
{0.30} { 1.5610849} { 0.0000004} { 1.0270000} { 0.0000000}{-0.4387932} { 0.0000000}
{0.40} { 1.7355674} { 0.0000005} { 1.0640000} { 0.0000000}{-0.2639200} { 0.0000000}
{0.50} { 1.9075312} { 0.0000007} { 1.1250000} { 0.0000000}{-0.0909056} { 0.0000000}
{0.60} { 2.0796995} { 0.0000008} { 1.2160000} { 0.0000000}{ 0.0835884} { 0.0000000}
{0.70} { 2.2550352} { 0.0000010} { 1.3430000} { 0.0000000}{ 0.2634397} { 0.0000000}
{0.80} { 2.4366860} { 0.0000011} { 1.5120000} { 0.0000000}{ 0.4530711} { 0.0000000}
{0.90} { 2.6279296} { 0.0000012} { 1.7290000} { 0.0000000}{ 0.6574554} { 0.0000000}
{1.00} { 2.8321192} { 0.0000014} { 2.0000000} { 0.0000000}{ 0.8821206} { 0.0000000}
>>>
#======== main========
n=100
if(i%10==0):
========= RESTART: F:/2018-09勤益科大數值分析/數值分析/PYTHON/EX5-10.py ===========t y1 |y1-w1(t)| y2 |y2-w2(t)| y3 |y3-w3(t)|
===========================================================================
{0.00} { 1.0000000} { 0.0000000} { 1.0000000} { 0.0000000} {-1.0000000} { 0.0000000}
{0.10} { 1.1951871} { 0.0000000} { 1.0010000} { 0.0000000} {-0.8048124} { 0.0000000}
{0.20} { 1.3816532} { 0.0000000} { 1.0080000} { 0.0000000} {-0.6183308} { 0.0000000}
{0.30} { 1.5610853} { 0.0000000} { 1.0270000} { 0.0000000} {-0.4387932} { 0.0000000}
{0.40} { 1.7355680} { 0.0000000} { 1.0640000} { 0.0000000} {-0.2639200} { 0.0000000}
{0.50} { 1.9075318} { 0.0000000} { 1.1250000} { 0.0000000} {-0.0909057} { 0.0000000}
{0.60} { 2.0797004} { 0.0000000} { 1.2160000} { 0.0000000} { 0.0835884} { 0.0000000}
{0.70} { 2.2550362} { 0.0000000} { 1.3430000} { 0.0000000} { 0.2634397} { 0.0000000}
{0.80} { 2.4366870} { 0.0000000} { 1.5120000} { 0.0000000} { 0.4530710} { 0.0000000}
{0.90} { 2.6279308} { 0.0000000} { 1.7290000} { 0.0000000} { 0.6574553} { 0.0000000}
{1.00} { 2.8321206} { 0.0000000} { 2.0000000} { 0.0000000} { 0.8821206} { 0.0000000}
>>>
沒有留言:
張貼留言