2019年1月18日 星期五

Background for the Hermite Interpolation Polynomial.

Background for the Hermite Interpolation Polynomial. The cubic Hermite polynomial  p(x)  has the interpolative properties  [Graphics:Images/HermitePolyMod_gr_1.gif]   [Graphics:Images/HermitePolyMod_gr_2.gif]   [Graphics:Images/HermitePolyMod_gr_3.gif]  and  [Graphics:Images/HermitePolyMod_gr_4.gif]  both the function values and their derivatives are known at the endpoints of the interval  [Graphics:Images/HermitePolyMod_gr_5.gif].  Hermite polynomials were studied by the French Mathematician Charles Hermite (1822-1901), and are referred to as a "clamped cubic," where "clamped" refers to the slope at the endpoints being fixed.  This situation is illustrated in the figure below. 
[Graphics:Images/HermitePolyMod_gr_6.gif]

Example 1.  Find the cubic Hermite polynomial or "clamped cubic" that satisfies 
        [Graphics:Images/HermitePolyMod_gr_7.gif]  
Solution 1.
Enter the formula for a general cubic equation.
[Graphics:../Images/HermitePolyMod_gr_8.gif]

[Graphics:../Images/HermitePolyMod_gr_9.gif]
Symbolic differentiation (integration too) is permitted with Mathematica.
[Graphics:../Images/HermitePolyMod_gr_10.gif]

[Graphics:../Images/HermitePolyMod_gr_11.gif]
Set up four equations using the prescribed endpoint conditions. Then find the solution set to this linear system and store it in the variable solset.
[Graphics:../Images/HermitePolyMod_gr_12.gif]
[Graphics:../Images/HermitePolyMod_gr_13.gif]
[Graphics:../Images/HermitePolyMod_gr_14.gif]
[Graphics:../Images/HermitePolyMod_gr_15.gif]
[Graphics:../Images/HermitePolyMod_gr_16.gif]

[Graphics:../Images/HermitePolyMod_gr_17.gif]

Use the solution given above for the coefficients and form the cubic function.  Remember that we must dig out one set of braces using [Graphics:../Images/HermitePolyMod_gr_18.gif]  before we can use the ReplaceAll command.
[Graphics:../Images/HermitePolyMod_gr_19.gif]
[Graphics:../Images/HermitePolyMod_gr_20.gif]
[Graphics:../Images/HermitePolyMod_gr_21.gif]

[Graphics:../Images/HermitePolyMod_gr_22.gif]

[Graphics:../Images/HermitePolyMod_gr_23.gif]


源自於
http://mathfaculty.fullerton.edu/mathews/n2003/Web/HermitePolyMod/HermitePolyMod.html

沒有留言:

張貼留言

113 學年度第 1 學期 RFID應用課程 Arduino程式

113 學年度第 1 學期 RFID應用課程 Arduino程式 https://www.mediafire.com/file/zr0h0p3iosq12jw/MFRC522+(2).7z/file 內含修改過後的 MFRC522 程式庫 (原程式有錯誤) //定義MFRC522...