Gaussian Elimination to Solve Linear Equations
源自於 https://www.geeksforgeeks.org/gaussian-elimination/// C++ program to demostrate working of Guassian Elimination // method #include<bits/stdc++.h> using namespace std; #define N 3 // Number of unknowns // function to reduce matrix to r.e.f. Returns a value to // indicate whether matrix is singular or not int forwardElim( double mat[N][N+1]); // function to calculate the values of the unknowns void backSub( double mat[N][N+1]); // function to get matrix content void gaussianElimination( double mat[N][N+1]) { /* reduction into r.e.f. */ int singular_flag = forwardElim(mat); /* if matrix is singular */ if (singular_flag != -1) { printf ( "Singular Matrix.\n" ); /* if the RHS of equation corresponding to zero row is 0, * system has infinitely many solutions, else inconsistent*/ if (mat[singular_flag][N]) printf ( "Inconsistent System." ); else printf ( "May have infinitely many " "solutions." ); return ; } /* get solution to system and print it using backward substitution */ backSub(mat); } // function for elemntary operation of swapping two rows void swap_row( double mat[N][N+1], int i, int j) { //printf("Swapped rows %d and %d\n", i, j); for ( int k=0; k<=N; k++) { double temp = mat[i][k]; mat[i][k] = mat[j][k]; mat[j][k] = temp; } } // function to print matrix content at any stage void print( double mat[N][N+1]) { for ( int i=0; i<N; i++, printf ( "\n" )) for ( int j=0; j<=N; j++) printf ( "%lf " , mat[i][j]); printf ( "\n" ); } // function to reduce matrix to r.e.f. int forwardElim( double mat[N][N+1]) { for ( int k=0; k<N; k++) { // Initialize maximum value and index for pivot int i_max = k; int v_max = mat[i_max][k]; /* find greater amplitude for pivot if any */ for ( int i = k+1; i < N; i++) if ( abs (mat[i][k]) > v_max) v_max = mat[i][k], i_max = i; /* if a prinicipal diagonal element is zero, * it denotes that matrix is singular, and * will lead to a division-by-zero later. */ if (!mat[k][i_max]) return k; // Matrix is singular /* Swap the greatest value row with current row */ if (i_max != k) swap_row(mat, k, i_max); for ( int i=k+1; i<N; i++) { /* factor f to set current row kth elemnt to 0, * and subsequently remaining kth column to 0 */ double f = mat[i][k]/mat[k][k]; /* subtract fth multiple of corresponding kth row element*/ for ( int j=k+1; j<=N; j++) mat[i][j] -= mat[k][j]*f; /* filling lower triangular matrix with zeros*/ mat[i][k] = 0; } //print(mat); //for matrix state } //print(mat); //for matrix state return -1; } // function to calculate the values of the unknowns void backSub( double mat[N][N+1]) { double x[N]; // An array to store solution /* Start calculating from last equation up to the first */ for ( int i = N-1; i >= 0; i--) { /* start with the RHS of the equation */ x[i] = mat[i][N]; /* Initialize j to i+1 since matrix is upper triangular*/ for ( int j=i+1; j<N; j++) { /* subtract all the lhs values * except the coefficient of the variable * whose value is being calculated */ x[i] -= mat[i][j]*x[j]; } /* divide the RHS by the coefficient of the unknown being calculated */ x[i] = x[i]/mat[i][i]; } printf ( "\nSolution for the system:\n" ); for ( int i=0; i<N; i++) printf ( "%lf\n" , x[i]); } // Driver program int main() { /* input matrix */ double mat[N][N+1] = {{3.0, 2.0,-4.0, 3.0}, {2.0, 3.0, 3.0, 15.0}, {5.0, -3, 1.0, 14.0} }; gaussianElimination(mat); return 0; } |
Output:
Solution for the system: 3.000000 1.000000 2.000000
Time Complexity: Since for each pivot we traverse the part to its right for each row below it, O(n)*(O(n)*O(n)) = O(n3).
We can also apply Gaussian Elimination for calculating:
- Rank of a matrix
- Determinant of a matrix
- Inverse of an invertible square matrix
沒有留言:
張貼留言