2019年1月31日 星期四

例題1-5 多項式 Lagrange內插法 f (x) = log (x) 求x=1.5 , 2.5 , 3.5 f(x)之值 = ? 並計算誤差值=?

例題1-5 多項式 Lagrange內插法
f (x) = ln (x)

已知 平面上4點

   x                  y=f(x)
===================
 1.0                 0.0
 2.0                 0.693
 3.0                 1.099
 4.0                  1.386

求x=1.5 , 2.5 , 3.5   f(x)之值 = ?
並計算誤差值=?



#/********** Lagrange's interpolation ***************/
import math

def f(x):
    return math.log(x)

n=4
x= [0.0 for i in range(n+1)]     #x [n] 矩陣
y= [0.0 for i in range(n+1)]     #f [n] 矩陣
x=[1.0 , 2.0  ,3.0 , 4.0]
y=[0.0 , 0.693 , 1.099 ,1.386 ]

n1=3
P=[1.5 , 2.5 , 3.5]
Px=[0.0 , 0.0 , 0.0]

#f(x)=log(x)
a=1.5   #x=1.5 求 f(1.5)= ?

print("\nEnter the number of the terms of the table: ",n)
print("\nEnter the respective values of the variables x and y: \n")
print("The values of x =")
for i  in range (0,n) :     #
    print( round( x[i],4),"\t",end='')
print()
print("The values of y =")
for i  in range (0,n) :     #
    print( round( y[i],4),"\t",end='')

print("\nEnter the value of the x to find the respective value of y ")
for i  in range (0,n1) :     #
    print( round( P[i],4),"\t",end='')
print()

for m in range (0 , n1):
    a=P[m]
    k=0.0
    for i in range(0, n):
        s=1.0
        t=1.0
        for j in range(0,n):
            if(j!=i):
                s=s*(a-x[j]);
                t=t*(x[i]-x[j]);
        k=k+((s/t)*y[i]);
    Px[m]=k
    print("\nThe {%.2f} to find respective value of the variable y is: {%.6f}" %(a, k))
 
print(" \nx\t\tP(x)\t\t\tf(x)\t\t\t|f(x)-P(x)|")
for i in range (0 , n1):
    print ("{%2.3f}\t\t{%5.6f}\t\t{%5.6f}\t\t{%5.6f}" %(P[i],Px[i], f(P[i]), abs(Px[i]-f(P[i]) ) ) )




輸出畫面
========= RESTART: F:/2018-09勤益科大數值分析/數值分析/PYTHON/EX1-5.py ============

Enter the number of the terms of the table:  4

Enter the respective values of the variables x and y: 

The values of x =
1.0 2.0 3.0 4.0
The values of y =
0.0 0.693 1.099 1.386
Enter the value of the x to find the respective value of y 
1.5 2.5 3.5

The {1.50} to find respective value of the variable y is: {0.392875}

The {2.50} to find respective value of the variable y is: {0.921375}

The {3.50} to find respective value of the variable y is: {1.246875}

x P(x) f(x) |f(x)-P(x)|
{1.500} {0.392875} {0.405465} {0.012590}
{2.500} {0.921375} {0.916291} {0.005084}
{3.500} {1.246875} {1.252763} {0.005888}
>>> 

例題1-2 Lagrange內插法 已知 平面上3點 求x=1.5 , f(x)= ?

例題1-2 Lagrange內插法

已知 平面上3點

   x                  y=f(x)
===================
 1.0                 0.0
 2.0                 0.693
 3.0                 1.099

求x=1.5 ,  f(x)= ?



#/********** Lagrange's interpolation ***************/
n=3
x= [0.0 for i in range(n+1)]     #x [n] 矩陣
y= [0.0 for i in range(n+1)]     #f [n] 矩陣
x=[1.0 , 2.0  ,3.0]
y=[0.0 , 0.693 , 1.099 ]

a=1.5   #x=1.5 求 f(1.5)= ?

print("\nEnter the number of the terms of the table: ",n)
print("\nEnter the respective values of the variables x and y: \n")
print("The values of x =")
for i  in range (0,n) :     # 
    print( round( x[i],4),"\t",end='')
print()
print("The values of y =")
for i  in range (0,n) :     # 
    print( round( y[i],4),"\t",end='')

print("\n\nEnter the value of the x to find the respective value of y ",a)

k=0.0
for i in range(0, n):
    s=1.0
    t=1.0
    for j in range(0,n):
        if(j!=i):
            s=s*(a-x[j]);
            t=t*(x[i]-x[j]);
    k=k+((s/t)*y[i]);

print("\nThe respective value of the variable y is: {%f}" %(k))




輸出畫面
======== RESTART: F:/2018-09勤益科大數值分析/數值分析/PYTHON/EX1-2.py ============

Enter the number of the terms of the table:  3

Enter the respective values of the variables x and y: 

The values of x =
1.0 2.0 3.0
The values of y =
0.0 0.693 1.099

Enter the value of the x to find the respective value of y  1.5

The respective value of the variable y is: {0.382375}
>>> 

例題1-1 Lagrange內插法 已知 平面上二點 求x=1.5 , f(x)= ?

例題1-1 Lagrange內插法
已知 平面上二點

   x                  y=f(x)
===================
 1.0                 0.0
 2.0                 0.693

求x=1.5 ,  f(x)= ?


#/********** Lagrange's interpolation ***************/
n=2
x= [0.0 for i in range(n+1)]     #x [n] 矩陣
y= [0.0 for i in range(n+1)]     #f [n] 矩陣
x=[1.0 , 2.0]
y=[0.0 , 0.693]
a=1.5   #x=1.5 求 f(1.5)= ?

k=0.0
d=1

print("\nEnter the number of the terms of the table: ",n)
print("\nEnter the respective values of the variables x and y: \n")
print("The values of x =")
for i  in range (0,n) :     #
    print( round( x[i],4),"\t",end='')
print()
print("The values of y =")
for i  in range (0,n) :     #
    print( round( y[i],4),"\t",end='')

print("\n Enter the value of the x to find the respective value of y ",a)

while(d==1):
    for i in range(0, n):
        s=1.0
        t=1.0
        for j in range(0,n):
            if(j!=i):
                s=s*(a-x[j]);
                t=t*(x[i]-x[j]);
       
        k=k+((s/t)*y[i]);

    print("\nThe respective value of the variable y is: {%f}" %(k))
    d=0


輸出畫面
========= RESTART: F:/2018-09勤益科大數值分析/數值分析/PYTHON/EX1-1.py ===========

Enter the number of the terms of the table:  2

Enter the respective values of the variables x and y: 

The values of x =
1.0 2.0
The values of y =
0.0 0.693
 Enter the value of the x to find the respective value of y  1.5

The respective value of the variable y is: {0.346500}
>>> 

範例7-5 請用有限差法 (Finite difference Method) 解 非線性常微分方程式 y'' + y' ^ 2 + y = ln(x)

範例7-5 請用有限差法 (Finite difference Method) 解
非線性常微分方程式
y'' +  y' ^ 2  + y = ln(x)

1 <= x <= 2 , y(1)= 0.0  ,  y(2)= ln(2)=0.6931472

其真實解 W(x) = ln(x)
取 h=0.1  , n=99 , h=0.01 , n=99

/* ex7-5.c uses finite difference method to solve
 * nonlinear ordinary differential equation with boundary
 * conditions, y"+p(x)y'+q(x)y=r(x),a<=x<=b,
 * y(a)=alfa, y(b)=bata. After transfer ordinary
 * differential equation into system of linear algebra
 * equations, then call function tridg() to solve
 * tridiagonal equations.
 */
#include <stdio.h>
#include <math.h>
#define  p(x,y)  (y)
#define  q(x,y)  (1.0)
#define  r(x,y)  (log(x))
#define  w(x)    (log(x))
void tridg(int,double [],double [],double [],double []);
void main()
{
   int i,k,n;
   double a[100],b[100],c[100],d[100],y[100],dy[100],
  h,x1,x,xn,aa,bb,alfa,bata,err;
   scanf("n=%d aa=%lf bb=%lf alfa=%lf bata=%lf",
  &n,&aa,&bb,&alfa,&bata);
   h=(bb-aa)/(n+1);
   for(i=1;i<=n;i++)
      y[i]=0.0;
   
   for(k=1;k<=100;k++)
   {
        x1=aa+h;
        /* dy[1]=y1'=(y2-y0)/(2h) */
        dy[1]=(1.0/(2*h))*(y[2]-alfa);
        b[1]=pow(h,2)*q((x1),(y[1]))-2.0;
        c[1]=(1+(h/2.0)*p((x1),(dy[1])));
        d[1]=pow(h,2)*r((x1),(y[1]))-(1.0-(h/2.0)*
    p((x1),(dy[1])))*alfa;
        for(i=2;i<=n-1;i++)
        {
            x=aa+i*h;
        /* dy[i]=yi' */
        dy[i]=(1.0/(2*h))*(y[i+1]-y[i-1]);
            a[i]=1-(h/2.0)*p((x),(dy[i]));
            b[i]=pow(h,2)*q((x),(y[i]))-2.0;
            c[i]=1+(h/2.0)*p((x),(dy[i]));
            d[i]=pow(h,2)*r((x),(y[i]));
        }
        xn=aa+n*h;
        /* dy[n]=yn' */
        dy[n]=(1.0/(2*h))*(bata-y[n-1]);
        a[n]=1-(h/2.0)*p((xn),(dy[n]));
        b[n]=pow(h,2)*q((xn),(y[n]))-2.0;
        d[n]=pow(h,2)*r((xn),(y[n]))-(1+(h/2.0)*
        p((xn),(dy[n])))*bata;
        tridg(n,a,b,c,d);
        err=0.0;
        for(i=1;i<=n;i++)
        err=err+fabs(d[i]-y[i]);
        if(err >0.001)
        {
        for(i=1;i<=n;i++)
            y[i]=d[i];
        }
        else
        goto bound;
   }
   bound:
   printf("The iterations=%d\n",k);
   printf("x       y(x)       w(x)      |y(x)-w(x)|\n");
   printf("%5.3lf %10.7lf %10.7lf %10.7lf\n",
   aa,alfa,w(aa),fabs(alfa-w(aa)));
   for(i=1;i<=n;i++)
   {
      x=aa+i*h;
      if(i%10==0)
      printf("%5.3lf %10.7lf %10.7lf %10.7lf\n",
      x,d[i],w(x),fabs(d[i]-w(x)));
   }
   printf("%5.3lf %10.7lf %10.7lf %10.7lf\n",
    bb,bata,w(bb),fabs(bata-w(bb)));
   return;
}
void tridg(int n,double a[],double b[],double c[],double d[])
{
   int i;
   double r;
   for(i=2;i<=n;i++)
   {
      r=a[i]/b[i-1];
      b[i]=b[i]-r*c[i-1];
      d[i]=d[i]-r*d[i-1];
   }
   /* The answers are stored in d[i] */
   d[n]=d[n]/b[n];
   for(i=n-1;i>=1;i--)
      d[i]=(d[i]-c[i]*d[i+1])/b[i];
   return;
}


輸入資料
n=99 aa=1.0 bb=2.0 alfa=0.0 bata=0.6931472

輸出資料
The iterations=6
x       y(x)       w(x)      |y(x)-w(x)|
1.000  0.0000000  0.0000000  0.0000000
1.100  0.0953101  0.0953102  0.0000001
1.200  0.1823215  0.1823216  0.0000001
1.300  0.2623644  0.2623643  0.0000001
1.400  0.3364727  0.3364722  0.0000004
1.500  0.4054658  0.4054651  0.0000007
1.600  0.4700045  0.4700036  0.0000009
1.700  0.5306291  0.5306283  0.0000009
1.800  0.5877874  0.5877867  0.0000007
1.900  0.6418543  0.6418539  0.0000004
2.000  0.6931472  0.6931472  0.0000000

範例7-4 請用有限差法 (Finite difference Method) 解 非線性常微分方程式的解 y'' + y y' - y^2 =0

範例7-4 請用有限差法 (Finite difference Method) 解
非線性常微分方程式的解
y'' + y y' - y^2 =0

1 <= x <= 2 , y(1)= 0.5  ,  y(2)= 1/3

其真實解 W(x) = 1/ (1+x) 
取 h=0.1  , n=99 , h=0.01 , n=99 


'''
/* ex7-4.py uses finite difference method to solve
 * ordinary differential equation with boundary
 * conditions, y"+p(x)y'+q(x)y=r(x),a<=x<=b,
 * y(a)=alfa, y(b)=bata. After transfer ordinary
 * differential equation into system of linear algebra
 * equations, then call function tridg() to solve
 * tridiagonal equations.
 */
 '''
import math

def  p(x,y):
    return (y)
   
def q(x,y):
    return (0.0)

def r(x,y):
    return (math.pow(y,3))

def w(x):
    return (1.0 / (1+x) )


def tridg( n , a, b,  c,  d ):
    for i in range (2 , n+1):
        r=a[i]/b[i-1]
        b[i]=b[i]-r*c[i-1]
        d[i]=d[i]-r*d[i-1]

    # /* The answers are stored in x[i] */
    d[n]=d[n]/b[n]

    for i in range (n-1 , 0 , -1):
        d[i]=(d[i]-c[i]*d[i+1]) / b[i]
    return

#++++++++++++++++++++++++++++++++++++++++
# n=99 aa=1.0 bb=2.0 alfa=0.5 bata=0.333333
#++++++++++++++++++++++++++++++++++++++++
n=99
aa=1.0
bb=2.0
alfa=0.5
bata=0.333333

a= [0.0 for i in range(0,n+1)]     #a [n] 矩陣
b= [0.0 for i in range(0,n+1)]     #a [n] 矩陣
c= [0.0 for i in range(0,n+1)]     #a [n] 矩陣
d= [0.0 for i in range(0,n+1)]     #a [n] 矩陣

y= [0.5 for i in range(0,n+1)]     #a [n] 矩陣


h=(bb-aa)/(n+1)

for k in range (1, 301):
    #x1=aa+h;
    x1=aa+h;
    b[1]=math.pow(h,2)* q ( (x1) , (y[1]) ) - 2.0
    c[1]=(1+(h/2.0)*p(  (x1) , (y[1]) ))
    d[1]=math.pow(h,2)*r( (x1) , (y[1]) ) - (1.0 - (h/2.0) * p(  (x1) , (y[1]))) * alfa

    for i in range (2 , n):
        x=aa+i*h;
        a[i]=1-(h/2.0)*p((x),(y[i]));
        b[i]=math.pow(h,2)*q((x),(y[i]))-2.0;
        c[i]=1+(h/2.0)*p((x),(y[i]));
        d[i]=math.pow(h,2)*r((x),(y[i]));

    xn=aa+n*h
    a[n]=1-(h/2.0)*p( (xn) , (y[n]) )
    b[n]=math.pow(h,2)*q((xn) , (y[n]))-2;
    d[n]=math.pow(h,2)*r((xn) , (y[n]))-(1+(h/2.0)*p( (xn) , (y[n]) ) )*bata;

    tridg(n,a,b,c,d)

    err=0.0
    for i in range (1 , n+1):
        err=err+abs(d[i]-y[i])
       
    if(err >0.001):
        for i in range (1, n+1):
            y[i]=d[i]
    else:
            break

#bound:
print("The iterations={%d}\n" %(k))
print(" x\t\ty(x)\t\t\tw(x)\t\t\t|y(x)-w(x)|\n")
print ("{%6.4f}\t\t{%10.7f}\t\t{%10.7f}\t\t{%10.7f}" %(aa,alfa, w(aa), abs(alfa-w(aa) ) ) )
for i in range (1 , n+1):
    x=aa+i*h;
    if(i%10==0):
        print ("{%6.4f}\t\t{%10.7f}\t\t{%10.7f}\t\t{%10.7f}" %(x,d[i],w(x),abs(d[i]-w(x) ) ))

print ("{%6.4f}\t\t{%10.7f}\t\t{%10.7f}\t\t{%10.7f}" %(bb,bata,w(bb),abs(bata-w(bb) ) ))

#for i in range (1,n+1) :      # //print the new matrix
 #   print( round(s1[i],4),"\t",end='')



輸出畫面
======== RESTART: F:\2018-09勤益科大數值分析\數值分析\PYTHON\EX7-4.py ===========
The iterations={5}

 x y(x) w(x) |y(x)-w(x)|

{1.0000} { 0.5000000} { 0.5000000} { 0.0000000}
{1.1000} { 0.4761904} { 0.4761905} { 0.0000000}
{1.2000} { 0.4545454} { 0.4545455} { 0.0000001}
{1.3000} { 0.4347825} { 0.4347826} { 0.0000001}
{1.4000} { 0.4166665} { 0.4166667} { 0.0000002}
{1.5000} { 0.3999998} { 0.4000000} { 0.0000002}
{1.6000} { 0.3846151} { 0.3846154} { 0.0000002}
{1.7000} { 0.3703701} { 0.3703704} { 0.0000003}
{1.8000} { 0.3571426} { 0.3571429} { 0.0000003}
{1.9000} { 0.3448273} { 0.3448276} { 0.0000003}
{2.0000} { 0.3333330} { 0.3333333} { 0.0000003}
>>>

數值分析 Numerical Analysis

網站著作權屬於國立臺灣師範大學 資訊工程學系
源自於
http://www.csie.ntnu.edu.tw/~u91029/

Search
 
About
Computational Geometry
 
Computational Topology

例題2-2 1.15 ⋅ 10^ − 5 x ^2 + 1.4 ⋅ 10^ − 5 x − 1.962 ⋅ 10 ^− 2 = 0

例題2-2
利用 網站  https://www.mathway.com/zh/Precalculus

1.1510-5x2+1.410-5x-1.96210-2=0
简化每一项。
点击了解更多的步骤...
0.0000115x2+0.000014x-0.01962=0
0.0000115x2+0.000014x-0.01962中分解出因子0.0000005
点击了解更多的步骤...
0.0000005(23x2+28x-39240)=0
两边都除以0.00000050 被任何非零数除结果都为0
(23x2+28x-39240)=0
23x2+28x-39240 设置为等于0 并且求解x
点击了解更多的步骤...
x=-14±222567923
结果可用精确值和十进制两种方式表示。
Exact Form:
x=-14+222567923,-14-222567923
Decimal Form:

113 學年度第 1 學期 RFID應用課程 Arduino程式

113 學年度第 1 學期 RFID應用課程 Arduino程式 https://www.mediafire.com/file/zr0h0p3iosq12jw/MFRC522+(2).7z/file 內含修改過後的 MFRC522 程式庫 (原程式有錯誤) //定義MFRC522...