使用Quartus-II 9.1SP2 + ModelSim 6.5b-Aletra + Altera DE2-115 FPGA開發平台,設計4-bit Multiplier 為例(FPGA開發平台)
module DE2_115 (SW, LEDR, LEDG , CLOCK_50 ,KEY ,HEX0 ,HEX1 ,HEX2,HEX3,HEX4 ,HEX5 ,HEX6,HEX7, GPIO );
input [17:0] SW; // toggle switches
input [7:0] KEY; // Push bottom
input CLOCK_50; //Clock 27MHz , 50Mhz
output [17:0] LEDR; // red LEDS
output [8:0] LEDG; // green LEDs
output [6:0] HEX0,HEX1,HEX2,HEX3; //7-segment display
output [6:0] HEX4,HEX5,HEX6,HEX7; //7-segment display
inout [35:0] GPIO;
assign HEX0=7'b111_1111;
assign HEX1=7'b111_1111;
assign HEX2=7'b111_1111;
assign HEX3=7'b111_1111;
assign HEX4=7'b111_1111;
assign HEX5=7'b111_1111;
assign HEX6=7'b111_1111;
assign HEX7=7'b111_1111;
// multiplier(P, A, B);
// output [7:0] P; // The 8-bit product.
// input [3:0] A; // The 4-bit multiplicand.
// input [3:0] B; // The 4-bit multiplier.
multiplier(LEDR[7:0],SW[3:0],SW[7:4]);
endmodule
input [17:0] SW; // toggle switches
input [7:0] KEY; // Push bottom
input CLOCK_50; //Clock 27MHz , 50Mhz
output [17:0] LEDR; // red LEDS
output [8:0] LEDG; // green LEDs
output [6:0] HEX0,HEX1,HEX2,HEX3; //7-segment display
output [6:0] HEX4,HEX5,HEX6,HEX7; //7-segment display
inout [35:0] GPIO;
assign HEX0=7'b111_1111;
assign HEX1=7'b111_1111;
assign HEX2=7'b111_1111;
assign HEX3=7'b111_1111;
assign HEX4=7'b111_1111;
assign HEX5=7'b111_1111;
assign HEX6=7'b111_1111;
assign HEX7=7'b111_1111;
// multiplier(P, A, B);
// output [7:0] P; // The 8-bit product.
// input [3:0] A; // The 4-bit multiplicand.
// input [3:0] B; // The 4-bit multiplier.
multiplier(LEDR[7:0],SW[3:0],SW[7:4]);
endmodule
module multiplier(P, A, B);
output [7:0] P; // The 8-bit product.
input [3:0] A; // The 4-bit multiplicand.
input [3:0] B; // The 4-bit multiplier.
wire [3:0] Augend0; // Input to first intermediate addition.
wire [3:0] Addend0; // Input to first intermediate addition.
wire [3:0] Sum0; // First intermediate sum.
wire Carry0; // Carry output of first intermediate addition.
wire [3:0] Addend1; // Input to second intermediate addition.
wire [3:0] Augend1; // Input to second intermediate addition.
wire [3:0] Sum1; // Second intermediate sum.
wire Carry1; // Carry output of second intermediate addition.
wire [3:0] Augend2; // Input to last addition.
wire [3:0] Addend2; // Input to last addition.
//
// Augend0 = (A * B[0]) rshift 1
//
and(P[0], A[0], B[0]); // Bit 0 goes straight to P.
and(Augend0[0], A[1], B[0]);
and(Augend0[1], A[2], B[0]);
and(Augend0[2], A[3], B[0]);
assign Augend0[3] = 0;
//
// Addend0 = A * B[1]
//
and(Addend0[0], A[0], B[1]);
and(Addend0[1], A[1], B[1]);
and(Addend0[2], A[2], B[1]);
and(Addend0[3], A[3], B[1]);
ripple_carry_adder rc0(Sum0, Carry0, Augend0, Addend0); // {Carry0, Sum0} = Augend0 + Addend0
assign P[1] = Sum0[0];
//
// Augend1 = (Augend0 + Addend0) rshift 1
//
assign Augend1[0] = Sum0[1];
assign Augend1[1] = Sum0[2];
assign Augend1[2] = Sum0[3];
assign Augend1[3] = Carry0;
//
// Addend1 = A * B[2]
//
and(Addend1[0], A[0], B[2]);
and(Addend1[1], A[1], B[2]);
and(Addend1[2], A[2], B[2]);
and(Addend1[3], A[3], B[2]);
ripple_carry_adder rc1(Sum1, Carry1, Augend1, Addend1); // {Carry1, Sum1} = Augend1 + Addend1
assign P[2] = Sum1[0];
//
// Augend2 = (Augend1 + Addend1) rshift 1
//
assign Augend2[0] = Sum1[1];
assign Augend2[1] = Sum1[2];
assign Augend2[2] = Sum1[3];
assign Augend2[3] = Carry1;
//
// Addend2 = A * B[3]
//
and(Addend2[0], A[0], B[3]);
and(Addend2[1], A[1], B[3]);
and(Addend2[2], A[2], B[3]);
and(Addend2[3], A[3], B[3]);
ripple_carry_adder rc2(P[6:3], P[7], Augend2, Addend2); // {P[7], P[6], P[5], P[5], P[3]} = Augend2 + Addend2
endmodule // multiplier
module ripple_carry_adder(S, C, A, B);
output [3:0] S; // The 4-bit sum.
output C; // The 1-bit carry.
input [3:0] A; // The 4-bit augend.
input [3:0] B; // The 4-bit addend.
wire C0; // The carry out bit of fa0, the carry in bit of fa1.
wire C1; // The carry out bit of fa1, the carry in bit of fa2.
wire C2; // The carry out bit of fa2, the carry in bit of fa3.
full_adder fa0(S[0], C0, A[0], B[0], 0); // Least significant bit.
full_adder fa1(S[1], C1, A[1], B[1], C0);
full_adder fa2(S[2], C2, A[2], B[2], C1);
full_adder fa3(S[3], C, A[3], B[3], C2); // Most significant bit.
endmodule // ripple_carry_adder
module full_adder(S, Cout, A, B, Cin);
output S;
output Cout;
input A;
input B;
input Cin;
wire w1;
wire w2;
wire w3;
wire w4;
xor(w1, A, B);
xor(S, Cin, w1);
and(w2, A, B);
and(w3, A, Cin);
and(w4, B, Cin);
or(Cout, w2, w3, w4);
endmodule // full_adder
沒有留言:
張貼留言