Julia語言 求Lagrange 的值 [ 1.5 , 2.5 ,3.5] 與誤差
x= [1.0 ,2.0 , 3.0 , 4.0]
y= [0.0,0.693,1.099,1.386]
xa = [ 1.5 , 2.5 ,3.5]
程式
using Printf
#This function returns another function, which is the Lagrange Interpolant of the values xvals and yvals.
function LagrangeInterpolantGenerator(xvals,yvals)
function LagrangeInterpolant(x)
numvalstoevaluate = length(x)
numvalstoevaluate == 1 ? output = 0 : output = zeros(numvalstoevaluate)
for k = 1:numvalstoevaluate
N = length(xvals)
LagrangePolynomials = ones(N)
for i in 1:N
for j in [1:i-1;i+1:N] #Surprisingly, this works even in the i=1 and i=N cases.
LagrangePolynomials[i] = LagrangePolynomials[i].*(x[k]-xvals[j])./(xvals[i]-xvals[j])
end
end
numvalstoevaluate == 1 ? output = sum(LagrangePolynomials.*yvals) : output[k] = sum(LagrangePolynomials.*yvals)
end
return output
end
return LagrangeInterpolant
end
#Examples
x= [1.0 ,2.0 , 3.0 , 4.0]
y= [0.0,0.693,1.099,1.386]
xa = [ 1.5 , 2.5 ,3.5]
for i = 1:3
interpolantfunc = LagrangeInterpolantGenerator(x,y)
xb=xa[i]
a=interpolantfunc(xb) #returns 0.34650
s = @sprintf("Lagrange插值法 P(%0.2f) = %0.5f " , float(xb) , float(a) )
println(s)
end
輸出結果
Lagrange插值法 P(1.50) = 0.39287
Lagrange插值法 P(2.50) = 0.92138
Lagrange插值法 P(3.50) = 1.24687
using Printf
#This function returns another function, which is the Lagrange Interpolant of the values xvals and yvals.
function LagrangeInterpolantGenerator(xvals,yvals)
function LagrangeInterpolant(x)
numvalstoevaluate = length(x)
numvalstoevaluate == 1 ? output = 0 : output = zeros(numvalstoevaluate)
for k = 1:numvalstoevaluate
N = length(xvals)
LagrangePolynomials = ones(N)
for i in 1:N
for j in [1:i-1;i+1:N] #Surprisingly, this works even in the i=1 and i=N cases.
LagrangePolynomials[i] = LagrangePolynomials[i].*(x[k]-xvals[j])./(xvals[i]-xvals[j])
end
end
numvalstoevaluate == 1 ? output = sum(LagrangePolynomials.*yvals) : output[k] = sum(LagrangePolynomials.*yvals)
end
return output
end
return LagrangeInterpolant
end
#Examples
x= [1.0 ,2.0 , 3.0 , 4.0]
y= [0.0,0.693,1.099,1.386]
xa = [ 1.5 , 2.5 ,3.5]
for i = 1:3
interpolantfunc = LagrangeInterpolantGenerator(x,y)
xb=xa[i]
a=interpolantfunc(xb) #returns 0.34650
s = @sprintf("Lagrange插值法 P(%0.2f) = %0.5f " , float(xb) , float(a) )
println(s)
xc = abs( float(a) - float(log(xb)) )
s = @sprintf("Lagrange插值法 P(%0.2f) 與 真實值的誤差 = %0.5f " , float(xb) , float(xc) )
println(s)
end
Lagrange插值法 P(1.50) = 0.39287
Lagrange插值法 P(1.50) 與 真實值的誤差 = 0.01259
Lagrange插值法 P(2.50) = 0.92138
Lagrange插值法 P(2.50) 與 真實值的誤差 = 0.00508
Lagrange插值法 P(3.50) = 1.24687
Lagrange插值法 P(3.50) 與 真實值的誤差 = 0.00589
沒有留言:
張貼留言