2019年12月30日 星期一

Combinational circuits using Decoder

Combinational circuits using Decoder


For example, if we need to implement the logic of a full adder, we need a 3:8 decoder and OR gates. The input to the full adder, first and second bits and carry bit, are used as input to the decoder. Let x, y and z represent these three bits. Sum and Carry outputs of a full adder have the following truth tables-
 \begin{tabular}{|c|c|c||c|c|} \hline x & y & z & S & C\\ \hline \hline 0 & 0 & 0 & 0 & 0\\ \hline 0 & 0 & 1 & 1 & 0\\ \hline 0 & 1 & 0 & 1 & 0\\ \hline 0 & 1 & 1 & 0 & 1\\ \hline 1 & 0 & 0 & 1 & 0\\ \hline 1 & 0 & 1 & 0 & 1\\ \hline 1 & 1 & 0 & 0 & 1\\ \hline 1 & 1 & 1 & 1 & 1\\ \hline \end{tabular}
Therefore we have-
S = \sum (1, 2, 4, 7)
C = \sum (3, 5, 6, 7)
The following circuit diagram shows the implementation of Full adder using a 3:8 Decoder and OR gates.


module SOP_decoder_FullAdder(a,b,cin,Sum,Cout);
input a,b,cin;
output Sum,Cout;
wire d0,d1,d2,d3,d4,d5,d6,d7;
assign d0=(~a&~b&~cin);
assign d1=(~a&~b&cin);
assign d2=(~a&b&~cin);
assign d3=(~a&b&cin);
assign d4=(a&~b&~cin);
assign d5=(a&~b&cin);
assign d6=(a&b&~cin);
assign d7=(a&b&cin);
assign Sum= d1 | d2 | d4 | d7;
assign Cout = d3 | d5 | d6 | d7;
endmodule


// 時間單位 100ns, 時間精確度100 ps
`timescale 100ns/100ps
module Test_bench;
reg a,b,cin = 1'b0;   //  暫存器資料初值為‘0’

wire Sum,Cout;

integer i;

//SOP_decoder_FullAdder(a,b,cin,Sum,Cout);
SOP_decoder_FullAdder  UUT(.a(a),.b(b),.cin(cin),.Sum(Sum),.Cout(Cout));
// initial程序結構區塊, 產生輸入信號波形
initial begin
    $monitor(a,b,cin,Sum,Cout);
    for (i=0; i<8; i=i+1) begin
        {a,b,cin} = i;
        #20;
    end
end

initial
begin
  #160;   // 模擬終止時間  160 ns
    $stop;
end

endmodule

沒有留言:

張貼留言

113 學年度第 1 學期 RFID應用課程 Arduino程式

113 學年度第 1 學期 RFID應用課程 Arduino程式 https://www.mediafire.com/file/zr0h0p3iosq12jw/MFRC522+(2).7z/file 內含修改過後的 MFRC522 程式庫 (原程式有錯誤) //定義MFRC522...