Julia語言例題1-5 已知函數f(x)=ln(x)
xi f(xi)
==============
1.0 0.000
2.0 0.693
3.0 1.099
4.0 1.386
請使用Lagrange 內插法 求f(1.5) ,f(2.5) f(3.5)的P(x)與f(x)
分別用x=1.5 ,2.5 ,3.5 計算f(x)的e(x)誤差值
using Printf
function lagrange(x::Array{Float64,1},f::Array{Float64,1},xa::Float64)
#
# implements the interpolation algorithm of Newton
#
# ON ENTRY :
# x abscisses, given as a column vector;
# f ordinates, given as a column vector;
# xa point where to evaluate the interpolating
# polynomial through (x[i],f[i]).
#
# ON RETURN :
# d divided differences, computed from and f;
# p value of the interpolating polynomial at xa.
#
# EXAMPLE :
n = length(x)
tmp2=0.0
for k=1:n
tmp1=1.0
for i=1:n
if (i != k)
tmp1 *= (xa-x[i]) / (x[k]-x[i])
end
end
tmp2=tmp2+tmp1*f[k]
end
return tmp2
end
function er(xa::Float64,x0::Float64,x1::Float64,x2::Float64,x3::Float64)
tmp1=0.0
tmp2=0.0
sum=1.0
xm=(x[1]+x[length(x)])/2
#println(xm)
for i=1:length(x)
sum=sum*i
end
#println(sum)
tmp1=(xa-x0)*(xa-x1)*(xa-x2)*(xa-x3)/sum
#println(tmp1)
tmp2=tmp1*(-6/xm^4)
return tmp2
end
x= [1.0 ,2.0 , 3.0 , 4.0]
f= [0.0,0.693,1.099,1.386]
xb = [ 1.5 , 2.5 ,3.5]
for i = 1:length(xb)
xa=xb[i]
result1 = lagrange(x,f,xa)
println("Lagrange 內插法理則 ")
println("x= " , x)
println("f(x)= " , f)
println("xa= " , xa)
s = @sprintf("Pn(x)=%0.5f" , result1 )
println(s)
s = @sprintf("f(xa)=%0.5f" , log(xa) )
println(s)
s = @sprintf("誤差 =%0.5f" , abs(log(xa)-result1) )
println(s)
println()
end
for i=1:length(xb)
result2=0.0
xa=xb[i]
x0=x[1]
x1=x[2]
x2=x[3]
x3=x[4]
result2= er(xa, x0 ,x1 , x2 , x3)
s=@sprintf("x= %0.2f 誤差e(x)=%0.5f",xa ,result2)
println(s)
end
輸出畫面
Lagrange 內插法理則
x= [1.0, 2.0, 3.0, 4.0]
f(x)= [0.0, 0.693, 1.099, 1.386]
xa= 1.5
Pn(x)=0.39287
f(xa)=0.40547
誤差 =0.01259
Lagrange 內插法理則
x= [1.0, 2.0, 3.0, 4.0]
f(x)= [0.0, 0.693, 1.099, 1.386]
xa= 2.5
Pn(x)=0.92138
f(xa)=0.91629
誤差 =0.00508
Lagrange 內插法理則
x= [1.0, 2.0, 3.0, 4.0]
f(x)= [0.0, 0.693, 1.099, 1.386]
xa= 3.5
Pn(x)=1.24687
f(xa)=1.25276
誤差 =0.00589
x= 1.50 誤差e(x)=0.00600
x= 2.50 誤差e(x)=-0.00360
x= 3.50 誤差e(x)=0.00600
沒有留言:
張貼留言