C語言 例題6-0 利用高斯消去法 Gauss Elimination
計算下面聯立方程式
E1 : -1.0 x1 + 1.0 x2 + 2.0 x3 = 2.0
E2: 3.0 x1 - 1.0 x2 + 1.0 x3 = 6.0
E3: -1.0 x1 + 3.0 x2 + 4.0 x3 = 4.0
/*
Gauss Elimination Method in C.
For this, let us first consider the following three equations:
a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3
Assuming a1 ≠ 0, x is eliminated from the second equation
by subtracting (a2/ a1) times the first equation
from the second equation.
In the same way, the C code presented here eliminates x
from third equation by subtracting (a3/a1) times the first
equation from the third equation.
Then we get the new equations as:
a1x + b1y + c1z = d1
b’2y + c’2z = d’2
c’’3z = d’’3
The elimination procedure is continued until only one
unknown remains in the last equation.
After its value is determined, the procedure is stopped.
Now, Gauss Elimination in C uses back substitution to get
the values of x, y and z as:
z= d’’3 / c’’3
y=(d’2 – c’2z) / b’2
x=( d1- c1z- b1y)/ a1
*/
#include <stdio.h>
#include <math.h>
int main(void)
{
int i,j,k,n;
n=3; //the order of matrix:
float c,x[n+1],sum=0.0;
//the elements of augmented matrix row-wise
float A[3][4]= { {-1.0 , 1.0 , 2.0 , 2.0 } ,
{ 3.0 , -1.0 , 1.0 , 6.0 } ,
{-1.0 , 3.0 , 4.0 , 4.0 } };
for(j=0; j<n; j++) /* loop for the generation of upper triangular matrix*/
{
for(i=0; i<n; i++)
{
if(i>j)
{
c=(A[i][j])/ (A[j][j]);
printf("%0.2lf\t--> \t ", c);
for(k=0; k<=n; k++)
{
A[i][k]=(A[i][k]) -c* (A[j][k]);
printf("%0.2lf\t ", A[i][k]);
}
printf("\n");
}
}
}
x[n-1]=A[n-1][n]/A[n-1][n-1];
printf("x[%d]=%0.2lf",n-1,x[n-1]);
/* this loop is for backward substitution*/
for(i=n-2; i>=0; i--)
{
sum=0;
for(j=i; j<n; j++)
{
sum=sum+A[i][j]*x[j];
}
x[i]=(A[i][n]-sum)/A[i][i];
}
printf("\nThe solution is: \n");
for(i=0; i<=n-1; i++)
{
printf("\nx%d=\t %0.2lf\t",i,x[i]); /* x1, x2, x3 are the required solutions*/
}
return(0);
}
輸出畫面
-3.00 --> 0.00 2.00 7.00 12.00
1.00 --> 0.00 2.00 2.00 2.00
1.00 --> 0.00 0.00 -5.00 -10.00
x[2]=2.00
The solution is:
x0= 1.00
x1= -1.00
x2= 2.00
訂閱:
張貼留言 (Atom)
WOKWI LED + MQTT Node-Red SQLite
WOKWI LED + MQTT Node-Red SQLite const char *mqtt_broker = "broker.mqtt-dashboard.com" ; const char *topic1 = "alex9ufo/e...
-
python pip 不是内部或外部命令 -- 解決方法 要安裝 Pyqt5 1. 首先,開啟命令提示字元。 2. 輸入 pip3 install pyqt5 好像不能執行 ! ! 錯誤顯示 : ‘ pip3 ’ 不是內部或外部命令、可執行的程式或批...
-
課程講義 下載 11/20 1) PPT 下載 + 程式下載 http://www.mediafire.com/file/cru4py7e8pptfda/106%E5%8B%A4%E7%9B%8A2-1.rar 11/27 2) PPT 下載...
-
• 認 識 PreFix、InFix、PostFix PreFix(前序式):* + 1 2 + 3 4 InFix(中序式): (1+2)*(3+4) PostFix(後序式):1 2 + 3 4 + * 後 序式的運算 例如: 運算時由 後序式的...
沒有留言:
張貼留言