2019年5月17日 星期五

C語言 例題5-2用修正Euler尤拉近似法 解一階常微分方程ODE y' = -y+x+1 0<= x <= 1 , y(0)=1 , h=0.2

C語言 例題5-2用修正Euler尤拉近似法 解一階常微分方程ODE y' = -y+x+1 0<= x <= 1 , y(0)=1 , h=0.2
For a given differential equation \frac{dy}{dx}=f(x, y) with initial condition y(x_0)=y_0
find the approximate solution using Predictor-Corrector method.
Predictor-Corrector Method :
The predictor-corrector method is also known as Modified-Euler method.
In the Euler method, the tangent is drawn at a point and slope is calculated for a given step size. Thus this method works best with linear functions, but for other cases, there remains a truncation error. To solve this problem the Modified Euler method is introduced. In this method instead of a point, the arithmetic average of the slope over an interval (x_t, x_{t+1}) is used.
Thus in the Predictor-Corrector method for each step the predicted value of y_{t+1}is calculated first using Euler’s method and then the slopes at the points (x_t, y_t) and (x_{t+1}, y_{t+1}) is calculated and the arithmetic average of these slopes are added to y_t to calculate the corrected value of y_{t+1}.




/* C Program to find approximation of a ordinary
   differential equation using modified Euler's method.
 
    This method is similar to Euler's method ,
    except here we use the average of slopes instead of one.

    x is calculate like the earlier method  and
    y1 = y0 + h*f(x0,y0)
    y2 = y1 +  h*(f(x0,y0)+f(x1,y1))/2
    y3 = y2 +  h*(f(x1,y1)+f(x2,y2))/2
    .
    .
    .
    .
    yn+1 = yn +  h*(f(xn,yn)+f(xn+1,yn+1))/2
    and so on...
*/

#include <stdio.h>
#include <math.h>
#define  w(t)    (exp(-t)+t)
// consider the differential equation
// for a given x and y
float f(float(x),float(y))
{
    return (-y+x+1);
}

// predicts the next value for a given (x, y)
// and step size h using Euler method
double predict(double x, double y, double h)
{
    // value of next y(predicted) is returned
    double y1p = y + h * f(x, y);
    return y1p;
}
 
// corrects the predicted value
// using Modified Euler method
double correct(double x, double y,
               double x1, double y1,
               double h)
{
    // (x, y) are of previous step
    // and x1 is the increased x for next step
    // and y1 is predicted y for next step
    double e = 0.00001;
    double y1c = y1;
 
    do {
        y1 = y1c;
        y1c = y + 0.5 * h * (f(x, y) + f(x1, y1));
    } while (fabs(y1c - y1) > e);
 
    // every iteration is correcting the value
    // of y using average slope
    return y1c;
}
 
void printFinalValues(double x, double xn,
                      double y, double h)
{
 
    printf("\n\tx\t\t\ty1p\t\t\ty1c\t\t\treal\t\terr\n");
    printf("=================================================================\n");
    while (x < xn) {
        double x1 = x + h;
        double y1p = predict(x, y, h);
        double y1c = correct(x, y, x1, y1p, h);
       
        printf("\t%0.2lf\t\t%0.4lf\t\t%0.4lf\t\t%0.4lf\t\t%0.4lf\n",x1,y1p,y1c,w(x1),fabs(y1c-w(x1)) );
        x = x1;
        y = y1c;
    }
 
    // at every iteration first the value
    // of for next step is first predicted
    // and then corrected.
    printf("\n\tThe final value of y at x =%0.2lf is : %0.4lf" ,x , y);
}
 
int main()
{
    // here x and y are the initial
    // given condition, so x=0 and y=1
    double x = 0, y = 1.0;
    printf("The value of x0=%0.2lf , ",x);
    printf("The Value of y0=%0.2lf\n",y);
    // final value of x for which y is needed
    double xn = 1;
 
    // step size
    double h = 0.2;
 
    printFinalValues(x, xn, y, h);
 
    return 0;
}


The value of x0=0.00 , The Value of y0=1.00

x y1p y1c real err
=========================================================
0.20 1.0000 1.0182 1.0187 0.0005
0.40 1.0545 1.0694 1.0703 0.0009
0.60 1.1355 1.1477 1.1488 0.0011
0.80 1.2382 1.2481 1.2493 0.0012
1.00 1.3585 1.3666 1.3679 0.0012

The final value of y at x =1.00 is : 1.3666

沒有留言:

張貼留言

Messaging API作為替代方案

  LINE超好用功能要沒了!LINE Notify明年3月底終止服務,有什麼替代方案? LINE Notify將於2025年3月31日結束服務,官方建議改用Messaging API作為替代方案。 //CHANNEL_ACCESS_TOKEN = 'Messaging ...