2018年12月23日 星期日

NEWTON’S GREGORY FORWARD INTERPOLATION FORMULA :

NEWTON’S GREGORY FORWARD INTERPOLATION FORMULA :
f(a+hu)=f(a)+u\Delta f(a)+\frac{u\left ( u-1 \right )}{2!}\Delta ^{2}f(a)+...+\frac{u\left ( u-1 \right )\left ( u-2 \right )...\left ( u-n+1 \right )}{n!}\Delta ^{n}f(a)
This formula is particularly useful for interpolating the values of f(x) near the beginning of the set of values given. h is called the interval of difference and u = ( x – a ) / h, Here a is first term.

Example :
Input : Value of Sin 52
  
Output :

Value at Sin 52 is 0.788003
Below is the implementation of newton forward interpolation method.
// CPP Program to interpolate using 
// newton forward interpolation
#include <bits/stdc++.h>
using namespace std;
  
// calculating u mentioned in the formula
float u_cal(float u, int n)
{
    float temp = u;
    for (int i = 1; i < n; i++)
        temp = temp * (u - i);
    return temp;
}
  
// calculating factorial of given number n
int fact(int n)
{
    int f = 1;
    for (int i = 2; i <= n; i++)
        f *= i;
    return f;
}
  
int main()
{
    // Number of values given
    int n = 4;
    float x[] = { 45, 50, 55, 60 };
      
    // y[][] is used for difference table
    // with y[][0] used for input
    float y[n][n];
    y[0][0] = 0.7071;
    y[1][0] = 0.7660;
    y[2][0] = 0.8192;
    y[3][0] = 0.8660;
  
    // Calculating the forward difference
    // table
    for (int i = 1; i < n; i++) {
        for (int j = 0; j < n - i; j++)
            y[j][i] = y[j + 1][i - 1] - y[j][i - 1];
    }
  
    // Displaying the forward difference table
    for (int i = 0; i < n; i++) {
        cout << setw(4) << x[i] 
             << "\t";
        for (int j = 0; j < n - i; j++)
            cout << setw(4) << y[i][j] 
                 << "\t";
        cout << endl;
    }
  
    // Value to interpolate at
    float value = 52;
  
    // initializing u and sum
    float sum = y[0][0];
    float u = (value - x[0]) / (x[1] - x[0]);
    for (int i = 1; i < n; i++) {
        sum = sum + (u_cal(u, i) * y[0][i]) /
                                 fact(i);
    }
  
    cout << "\n Value at " << value << " is " 
         << sum << endl;
    return 0;
}
Output:
  45    0.7071    0.0589    -0.00569999    -0.000699997    
  50    0.766    0.0532    -0.00639999    
  55    0.8192    0.0468    
  60    0.866    

  Value at 52 is 0.788003

沒有留言:

張貼留言

113 學年度第 1 學期 RFID應用課程 Arduino程式

113 學年度第 1 學期 RFID應用課程 Arduino程式 https://www.mediafire.com/file/zr0h0p3iosq12jw/MFRC522+(2).7z/file 內含修改過後的 MFRC522 程式庫 (原程式有錯誤) //定義MFRC522...