2018年12月26日 星期三

Newton Forward Interpolation

Newton Forward Interpolation

Interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable, while the process of computing the value of the function outside the given range is called extrapolation.
Forward Differences : The differences y1 – y0, y2 – y1, y3 – y2, ……, yn – yn–1 when denoted by dy0, dy1, dy2, ……, dyn–1 are respectively, called the first forward differences. Thus the first forward differences are :
\Delta Y_{r}=Y_{r+1}-Y_{r}
NEWTON’S GREGORY FORWARD INTERPOLATION FORMULA :
f(a+hu)=f(a)+u\Delta f(a)+\frac{u\left ( u-1 \right )}{2!}\Delta ^{2}f(a)+...+\frac{u\left ( u-1 \right )\left ( u-2 \right )...\left ( u-n+1 \right )}{n!}\Delta ^{n}f(a)
This formula is particularly useful for interpolating the values of f(x) near the beginning of the set of values given. h is called the interval of difference and u = ( x – a ) / h, Here a is first term.
Example :
Input : Value of Sin 52
  
Output :

Value at Sin 52 is 0.788003
Below is the implementation of newton forward interpolation method.

// CPP Program to interpolate using  
// newton forward interpolation 
#include <bits/stdc++.h> 
using namespace std; 
  
// calculating u mentioned in the formula 
float u_cal(float u, int n) 
    float temp = u; 
    for (int i = 1; i < n; i++) 
        temp = temp * (u - i); 
    return temp; 
  
// calculating factorial of given number n 
int fact(int n) 
    int f = 1; 
    for (int i = 2; i <= n; i++) 
        f *= i; 
    return f; 
  
int main() 
    // Number of values given 
    int n = 4; 
    float x[] = { 45, 50, 55, 60 }; 
      
    // y[][] is used for difference table 
    // with y[][0] used for input 
    float y[n][n]; 
    y[0][0] = 0.7071; 
    y[1][0] = 0.7660; 
    y[2][0] = 0.8192; 
    y[3][0] = 0.8660; 
  
    // Calculating the forward difference 
    // table 
    for (int i = 1; i < n; i++) { 
        for (int j = 0; j < n - i; j++) 
            y[j][i] = y[j + 1][i - 1] - y[j][i - 1]; 
    } 
  
    // Displaying the forward difference table 
    for (int i = 0; i < n; i++) { 
        cout << setw(4) << x[i]  
             << "\t"; 
        for (int j = 0; j < n - i; j++) 
            cout << setw(4) << y[i][j]  
                 << "\t"; 
        cout << endl; 
    } 
  
    // Value to interpolate at 
    float value = 52; 
  
    // initializing u and sum 
    float sum = y[0][0]; 
    float u = (value - x[0]) / (x[1] - x[0]); 
    for (int i = 1; i < n; i++) { 
        sum = sum + (u_cal(u, i) * y[0][i]) / 
                                 fact(i); 
    } 
  
    cout << "\n Value at " << value << " is " 
         << sum << endl; 
    return 0; 
Output:
  45    0.7071    0.0589    -0.00569999    -0.000699997    
  50    0.766    0.0532    -0.00639999    
  55    0.8192    0.0468    
  60    0.866    

  Value at 52 is 0.788003

沒有留言:

張貼留言

Messaging API作為替代方案

  LINE超好用功能要沒了!LINE Notify明年3月底終止服務,有什麼替代方案? LINE Notify將於2025年3月31日結束服務,官方建議改用Messaging API作為替代方案。 //CHANNEL_ACCESS_TOKEN = 'Messaging ...