2018年12月23日 星期日

Newton’s Divided Difference Interpolation Formula

Newton’s Divided Difference Interpolation Formula

Interpolation is an estimation of a value within two known values in a sequence of values.
Newton’s divided difference interpolation formula is a interpolation technique used when the interval difference is not same for all sequence of values.
Suppose f(x0), f(x1), f(x2)………f(xn) be the (n+1) values of the function y=f(x) corresponding to the arguments x=x0, x1, x2…xn, where interval differences are not same
Then the first divided difference is given by
 f[x_0, x_1]=\frac{f(x_1)-f(x_0)}{x_1-x_0} 
The second divided difference is given by
 f[x_0, x_1, x_2]=\frac{f[x_1, x_2]-f[x_0, x_1]}{x_2-x_0} 
and so on…
Divided differences are symmetric with respect to the arguments i.e independent of the order of arguments.
so, 
f[x0, x1]=f[x1, x0]
f[x0, x1, x2]=f[x2, x1, x0]=f[x1, x2, x0]

By using first divided difference, second divided difference as so on .A table is formed which is called the divided difference table.
Divided difference table:
NEWTON’S DIVIDED DIFFERENCE INTERPOLATION FORMULA

 f(x)=f(x_0)+f[x_0, x_1]+(x-x_0)(x-x_1)f[x_0, x_1, x_2]+..........................+(x-x_0)(x-x_1)...(x-x_k)f[x_0, x_1, x_2...x_k]

Examples:
Input : Value at 7
       
Output :
      
      Value at 7 is 13.47

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

// CPP program for implementing 
// Newton divided difference formula 
#include <bits/stdc++.h> 
using namespace std; 

// Function to find the product term 
float proterm(int i, float value, float x[]) 
float pro = 1; 
for (int j = 0; j < i; j++) { 
pro = pro * (value - x[j]); 
return pro; 

// Function for calculating 
// divided difference table 
void dividedDiffTable(float x[], float y[][10], int n) 
for (int i = 1; i < n; i++) { 
for (int j = 0; j < n - i; j++) { 
y[j][i] = (y[j][i - 1] - y[j + 1] 
[i - 1]) / (x[j] - x[i + j]); 

// Function for applying Newton's 
// divided difference formula 
float applyFormula(float value, float x[], 
float y[][10], int n) 
float sum = y[0][0]; 

for (int i = 1; i < n; i++) { 
sum = sum + (proterm(i, value, x) * y[0][i]); 
return sum; 

// Function for displaying 
// divided difference table 
void printDiffTable(float y[][10],int n) 
for (int i = 0; i < n; i++) { 
for (int j = 0; j < n - i; j++) { 
cout << setprecision(4) << 
y[i][j] << "\t "; 
cout << "\n"; 

// Driver Function 
int main() 
// number of inputs given 
int n = 4; 
float value, sum, y[10][10]; 
float x[] = { 5, 6, 9, 11 }; 

// y[][] is used for divided difference 
// table where y[][0] is used for input 
y[0][0] = 12; 
y[1][0] = 13; 
y[2][0] = 14; 
y[3][0] = 16; 

// calculating divided difference table 
dividedDiffTable(x, y, n); 

// displaying divided difference table 
printDiffTable(y,n); 

// value to be interpolated 
value = 7; 

// printing the value 
cout << "\nValue at " << value << " is "
<< applyFormula(value, x, y, n) << endl; 
return 0; 


Output:
12     1     -0.1667     0.05     
13     0.3333     0.1333     
14     1     
16     

Value at 7 is 13.47


12       1       -0.1667         0.05                                                                                 
13       0.3333  0.1333                                                                                               
14       1                                                                                                            
16                                                                                                                    
                                                                                                                      
Value at 7 is 13.47                                                                                                   
                                                                                                                      
                                                                                                                      
...Program finished with exit code 0                                                                                  
Press ENTER to exit console.    


沒有留言:

張貼留言

113 學年度第 1 學期 RFID應用課程 Arduino程式

113 學年度第 1 學期 RFID應用課程 Arduino程式 https://www.mediafire.com/file/zr0h0p3iosq12jw/MFRC522+(2).7z/file 內含修改過後的 MFRC522 程式庫 (原程式有錯誤) //定義MFRC522...