2018年12月26日 星期三

EWTON’S GREGORY BACKWARD INTERPOLATION FORMULA

NEWTON’S GREGORY BACKWARD INTERPOLATION FORMULA :

f(a+nh+uh)=f(a+nh)+u\nabla f(a+nh)+\frac{u\left ( u+1 \right )}{2!}\nabla ^{2}f(a+nh)+...+\frac{u\left ( u+1 \right )...\left ( u+\overline{n-1} \right )}{n!}\nabla ^{n}f(a+nh)
This formula is useful when the value of f(x) is required near the end of the table. h is called the interval of difference and u = ( x – an ) / h, Here an is last term.
Example :
Input : Population in 1925

Output :

Value in 1925 is 96.8368 
Below is the implementation of newton backward interpolation method.

// CPP Program to interpolate using 
// newton backward interpolation 
#include <bits/stdc++.h> 
using namespace std; 

// Calculation of u mentioned in formula 
float u_cal(float u, int n) 
float temp = u; 
for (int i = 1; i < n; i++) 
temp = temp * (u + i); 
return temp; 

// Calculating factorial of given n 
int fact(int n) 
int f = 1; 
for (int i = 2; i <= n; i++) 
f *= i; 
return f; 

int main() 
// number of values given 
int n = 5; 
float x[] = { 1891, 1901, 1911, 
1921, 1931 }; 
// y[][] is used for difference 
// table and y[][0] used for input 
float y[n][n]; 
y[0][0] = 46; 
y[1][0] = 66; 
y[2][0] = 81; 
y[3][0] = 93; 
y[4][0] = 101; 

// Calculating the backward difference table 
for (int i = 1; i < n; i++) { 
for (int j = n - 1; j >= i; j--) 
y[j][i] = y[j][i - 1] - y[j - 1][i - 1]; 

// Displaying the backward difference table 
for (int i = 0; i < n; i++) { 
for (int j = 0; j <= i; j++) 
cout << setw(4) << y[i][j] 
<< "\t"; 
cout << endl; 

// Value to interpolate at 
float value = 1925; 

// Initializing u and sum 
float sum = y[n - 1][0]; 
float u = (value - x[n - 1]) / (x[1] - x[0]); 
for (int i = 1; i < n; i++) { 
sum = sum + (u_cal(u, i) * y[n - 1][i]) / 
fact(i); 

cout << "\n Value at " << value << " is "
<< sum << endl; 
return 0; 

Output:
  46    
  66      20    
  81      15      -5    
  93      12      -3       2    
 101       8      -4      -1      -3    

 Value at 1925 is 96.8368

沒有留言:

張貼留言

113 學年度第 1 學期 RFID應用課程 Arduino程式

113 學年度第 1 學期 RFID應用課程 Arduino程式 https://www.mediafire.com/file/zr0h0p3iosq12jw/MFRC522+(2).7z/file 內含修改過後的 MFRC522 程式庫 (原程式有錯誤) //定義MFRC522...