2019年5月13日 星期一

C語言 例題5-6 四階 Runge-Kutta 解 ODE y'= -y + t^2 + 1 , 0<=t<=1 , y(0)=1 , 真實解 W(t)= -2e^(-t) + t ^2 - 2t + 3

C語言 例題5-6  四階 Runge-Kutta 解 ODE y'= -y + t^2 + 1 , 0<=t<=1 , y(0)=1 , 真實解 W(t)= -2e^(-t) + t ^2 - 2t + 3


//Code for RUNGE-KUTTA 4th ORDER METHOD in C Programming
// dy/dx = -y +x^2 +1  , 0<= x <=1 , y(0)=1

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

double rk4(double(*f)(double, double), double dx, double x, double y)
{
double k1 = dx * f(x, y),
k2 = dx * f(x + dx / 2, y + k1 / 2),
k3 = dx * f(x + dx / 2, y + k2 / 2),
k4 = dx * f(x + dx, y + k3);
return y + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
}

double rate(double x, double y)
{
return (-y+ (x*x) +1);
}


int main(void)
{
double *y, x, y2;
double x0 = 0, x1 = 1, dx = .001;
int i, n = 1 + (x1 - x0)/dx;
y = (double *)malloc(sizeof(double) * n);

for (y[0] = 1, i = 1; i < n; i++)
y[i] = rk4(rate, dx, x0 + dx * (i - 1), y[i-1]);

printf("   x\t     y\t     real.        err.\n------------------------------------------\n");
for (i = 0; i < n; i++)
{
x = x0 + dx * i;
y2 = -2*exp(-x) + pow(x, 2) -2*x +3;
if (i%100==0)
    printf("%0.2lf\t%0.7lf\t%0.7lf\t%0.7lf\n", x, y[i], y2, (y[i]/y2 - 1));
}

return 0;
}


輸出畫面
   x      y      real.        err.
------------------------------------------
0.00 1.0000000 1.0000000 0.0000000
0.10 1.0003252 1.0003252 0.0000000
0.20 1.0025385 1.0025385 0.0000000
0.30 1.0083636 1.0083636 0.0000000
0.40 1.0193599 1.0193599 0.0000000
0.50 1.0369387 1.0369387 0.0000000
0.60 1.0623767 1.0623767 0.0000000
0.70 1.0968294 1.0968294 0.0000000
0.80 1.1413421 1.1413421 0.0000000
0.90 1.1968607 1.1968607 0.0000000
1.00 1.2642411 1.2642411 0.0000000

沒有留言:

張貼留言

WOKWI 模擬RFID UID產生 暨 4LED on,off,flash控制(1)

WOKWI 模擬RFID UID產生 暨 4LED on,off,flash控制(1) #include < ArduinoMqttClient.h > #include < WiFi.h > //MFRC522 程式庫  模擬mfrc522 送出卡號...